首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2969篇
  免费   198篇
  国内免费   2篇
  3169篇
  2022年   14篇
  2021年   33篇
  2020年   17篇
  2019年   19篇
  2018年   25篇
  2017年   24篇
  2016年   49篇
  2015年   77篇
  2014年   86篇
  2013年   146篇
  2012年   149篇
  2011年   142篇
  2010年   94篇
  2009年   87篇
  2008年   172篇
  2007年   161篇
  2006年   143篇
  2005年   150篇
  2004年   155篇
  2003年   128篇
  2002年   137篇
  2001年   112篇
  2000年   104篇
  1999年   65篇
  1998年   34篇
  1997年   31篇
  1996年   26篇
  1995年   33篇
  1994年   18篇
  1993年   19篇
  1992年   57篇
  1991年   60篇
  1990年   46篇
  1989年   79篇
  1988年   59篇
  1987年   43篇
  1986年   42篇
  1985年   54篇
  1984年   24篇
  1983年   31篇
  1982年   26篇
  1981年   11篇
  1980年   15篇
  1979年   20篇
  1978年   15篇
  1977年   16篇
  1975年   12篇
  1973年   16篇
  1972年   11篇
  1968年   9篇
排序方式: 共有3169条查询结果,搜索用时 11 毫秒
961.
Muscarinic receptors are important in the development of airway hyperresponsiveness. In some patients with asthma and in animal models of hyperreactivity, functional abnormalities in these receptors are suggested to contribute to disease. Here, we have screened for single nucleotide polymorphisms in the coding region of human muscarinic m2 and m3 receptor genes using direct fluorescence sequencing. DNA samples from 102 current asthmatics and 58 who had outgrown asthma ("outgrow" patients) were compared with 70 random non-asthmatic controls. A mutation characterized by a single base substitution (A1050G, Ser350Ser) was identified in the muscarinic m2 receptor gene. This polymorphism was common and was represented in all three groups studied. In contrast, in the m3 receptor coding region examined, we found a very rare nucleotide variant (C261T, Ile87Ile), identified in only one of the 230 samples genotyped. Therefore, neither A1050G in the m2 receptor nor C261T in the m3 receptor is likely to be functionally significant for airway hyperresponsiveness in asthma. Our data suggest that both the m2 and m3 receptor genes are highly conserved, and no significant genetic mutations are related to their possible functional changes in human asthma.  相似文献   
962.
The upr-1 mutant was one of the first mutagen-sensitive mutants to be isolated in Neurospora crassa. However, the function of the upr-1 gene has not yet been elucidated, although some genetic and biochemical data have been accumulated. In order to clone the upr-1 gene, we performed a chromosome walk from the mat locus, the closest genetic marker to upr-1 for which a molecular probe was available, towards the centromere, and a chromosomal contig of about 300-400 kb was constructed. Some of these clones complemented the temperature sensitivity of the un-16 mutation, which is located between mat and upr-1. The un-16 gene was sequenced, and localized in the MIPS Neurospora crassa genome database. We then searched the regions flanking un-16 for homologs of known DNA repair genes, and found a gene homologous to the REV3 gene of budding yeast. The phenotype of the upr-1 mutant is similar to that of the yeast rev3 mutant. An ncrev3 mutant carrying mutations in the N. crassa REV3 homolog was constructed using the RIP (repeat-induced point mutation) process. The spectrum of mutagen sensitivity of the ncrev3 mutant was similar to that of the upr-1 mutant. Complementation tests between the upr-1 and ncrev3 mutations indicated that the upr-1 gene is in fact identical to the ncrev3 gene. To clarify the role of the upr-1 gene in DNA repair, the frequency of MMS and 4NQO-induced mutations was assayed using the ad-8 reversion test. The upr-1 mutant was about 10 times less sensitive to both chemicals than the wild type. The expression level of the upr-1 gene is increased on exposure to UV irradiation in the uvs-2 and mus-8 mutants, which belong to postreplication repair group, as well as in the wild type. All these results suggest that the product of the upr-1 gene functions in damage-induced mutagenesis and DNA translesion synthesis in N. crassa.  相似文献   
963.
Our newly developed method using a dialysis electrode has made it possible to perform real time monitoring of extracellular glutamate concentration ([Glu]e) utilizing the oxygen-independent reaction with glutamate oxidase and ferrocene. In this study, we therefore, investigated [Glu]e changes during brain ischemia using both the conventional microdialysis method and the dialysis electrode method. A comparison between our newly developed dialysis electrode and conventional microdialysis methods provided the following results. When the conventional microdialysis method was employed: (1) the elevation of [Glu]e during complete global ischemia was delayed; and (2) the elevation of concentration and reuptake of glutamate were delayed during 10-min transient ischemia, and the elevation of [Glu]e reached a maximum later using conventional microdialysis than using our dialysis electrode. (3) The biphasic [Glu]e elevation of glutamate concentration detected using the dialysis electrode method was not observed using the conventional microdialysis method. It was additionally investigated why the conventional microdialysis method provides inferior time resolution. In this study, we also demonstrated with the chromatographic SMART procedure coupled to UV detection that biogenic substances, i.e. low molecular weight proteins and peptides, are released during ischemic injury, and they may cause a delay in the time resolution in the microdialysis method.  相似文献   
964.
Gamete activation factor (GAF) induces exflagellation of Plasmodium microgametes. We found GAF in the salivary glands of female mosquitoes, Anopheles stephensi. The exflagellation was induced in a concentration-dependent manner in the supernatant of salivary gland's crude homogenate. The exflagellation-inducing activity in the salivary gland was higher than that in the midgut and the head. GAF in the salivary glands was found to be heat stable and low molecular weight (<3000 molecular weight). Analysis of the supernatant by capillary electrophoresis and UV absorbance profile showed that the salivary glands contained xanthurenic acid, which was previously identified as GAF in the head of A. stephensi. The exflagellation-inducing activity in the salivary gland declined immediately after a blood meal, implying that GAF was in the saliva, and was delivered into the midgut together with the blood and induced exflagellation in the midgut.  相似文献   
965.
Lysophosphatidic acid (LPA) induces diverse biological responses in many types of cells and tissues by activating its specific G protein-coupled receptors (GPCRs). Previously, three cognate LPA GPCRs (LP(A1)/VZG-1/EDG-2, LP(A2)/EDG-4, and LP(A3)/EDG-7) were identified in mammals. By contrast, an unrelated GPCR, PSP24, was reported to be a high affinity LPA receptor in Xenopus laevis oocytes, raising the possibility that Xenopus uses a very different form of LPA signaling. Toward addressing this issue, we report two novel Xenopus genes, xlp(A1)-1 and xlp(A1)-2, encoding LP(A1) homologs (approximately 90% amino acid sequence identity with mammalian LP(A1)). Both xlp(A1)-1 and xlp(A1)-2 are expressed in oocytes and the nervous system. Overexpression of either gene in oocytes potentiated LPA-induced oscillatory chloride ion currents through a pertussis toxin-insensitive pathway. Injection of antisense oligonucleotides designed to inhibit xlp(A1)-1 and xlp(A1)-2 expression in oocytes eliminated their endogenous response to LPA. Furthermore, retrovirus-mediated heterologous expression of xlp(A1)-1 or xlp(A1)-2 in B103 rat neuroblastoma cells that are unresponsive to LPA conferred LPA-induced cell rounding and adenylyl cyclase inhibition. These results indicate that XLP(A1)-1 and XLP(A1)-2 are functional Xenopus LPA receptors and demonstrate the evolutionary conservation of LPA signaling over a range of vertebrate phylogeny.  相似文献   
966.
New orexigenic peptides called orexin-A and -B have recently been described in neurons of the lateral hypothalamus and perifornical area. No orexins have been found in adipose tissues or visceral organs, including the adrenal gland. However, expression of the orexin-receptor 2 (OX2R) in the rat adrenal gland has been reported. To test the effects of orexins on peripheral organs, we investigated their effects on catecholamine synthesis and secretion in the rat pheochromocytoma cell line PC12. Orexin-A and -B (100 nM) significantly reduced basal and PACAP-induced tyrosine hydroxylase (TH) (the rate-limiting enzyme in the biosynthesis of catecholamines) mRNA levels. Orexin-A and -B (100 nM) also significantly inhibited the PACAP-induced increase in the cAMP level, suggesting that the suppressive effect on TH mRNA is mediated, at least in part, by the cAMP/protein kinase A pathway. Furthermore, orexin-A and -B (100 nM) significantly suppressed basal and PACAP-induced dopamine secretion from PC12 cells. Next, we examined whether orexin receptors (OX1R, OX2R) were present in the rat adrenal gland and PC12 cells. In the adrenal glands, OX2R was as strongly expressed as in the hypothalamus, but OX1R was not detected. On the other hand, neither OX1R nor OX2R was expressed in PC12 cells. However, binding assays showed equal binding of orexin-A and -B to PC12 cells, suggesting the existence in these cells of some receptors for orexins. These results indicate that orexins suppress catecholamine release and synthesis, and that the inhibitory effect is mediated by the cAMP/protein kinase A pathway.  相似文献   
967.
Junctional adhesion molecule (JAM) is a member of the immunoglobulin superfamily (IgSF) expressed in tight junctions of epithelial cells and endothelial cells, and implicated in transendothelial migration of leukocytes. Recently, JAM is reported to be constitutively expressed on circulating monocytes, neutrophils, lymphocytes subsets, and platelets. However, the role of JAM is not known. Here, we examined how phosphorylaton of JAM is regulated upon platelet activation. Phosphorylation of JAM was induced by thrombin, collagen, but not by ADP. The phosphorylated amino acids were shown to be serine residues by phosphoamino acid analysis. Inhibition of JAM's phosphorylation by PKC inhibitors and Ca(++) chelator suggests the involvement of conventional types of PKCs. By in vitro kinase assays, we demonstrated that JAM could be directly phosphorylated by cPKCs. We also demonstrated phosphorylation of Ser 284, a putative PKC phosphorylation site, by immunoblotting with anti-phosphoserine-JAM antibody in thrombin-stimulated platelets. In addition to the phosphorylation, JAM seemed to form clusters at several sites of cell-cell contact in aggregated platelets by immunoelectron microscopic study. We speculate that JAM may be directly phosphorylated by cPKC(s)upon platelet activation and that the phosphorylationmight be involved in platelet activation.  相似文献   
968.
In behavioral learning, reward-related events are encoded into phasic dopamine (DA) signals in the brain. In particular, unexpected reward omission leads to a phasic decrease in DA (DA dip) in the striatum, which triggers long-term potentiation (LTP) in DA D2 receptor (D2R)-expressing spiny-projection neurons (D2 SPNs). While this LTP is required for reward discrimination, it is unclear how such a short DA-dip signal (0.5–2 s) is transferred through intracellular signaling to the coincidence detector, adenylate cyclase (AC). In the present study, we built a computational model of D2 signaling to determine conditions for the DA-dip detection. The DA dip can be detected only if the basal DA signal sufficiently inhibits AC, and the DA-dip signal sufficiently disinhibits AC. We found that those two requirements were simultaneously satisfied only if two key molecules, D2R and regulators of G protein signaling (RGS) were balanced within a certain range; this balance has indeed been observed in experimental studies. We also found that high level of RGS was required for the detection of a 0.5-s short DA dip, and the analytical solutions for these requirements confirmed their universality. The imbalance between D2R and RGS is associated with schizophrenia and DYT1 dystonia, both of which are accompanied by abnormal striatal LTP. Our simulations suggest that D2 SPNs in patients with schizophrenia and DYT1 dystonia cannot detect short DA dips. We finally discussed that such psychiatric and movement disorders can be understood in terms of the imbalance between D2R and RGS.  相似文献   
969.
Hormonal and inflammatory responses to low-intensity resistance exercise with vascular occlusion were studied. Subjects (n = 6) performed bilateral leg extension exercise in the seated position, with the proximal end of their thigh compressed at 214 +/- 7.7 (SE) mmHg throughout the session of exercise by means of a pressure tourniquet. Mean intensity and quantity of the exercise were 20% of 1 repetition maximum and 14 repetitions x 5 sets, respectively. In each set, the subjects repeated the movement until exhaustion. Plasma concentrations of growth hormone (GH), norepinephrine (NE), lacate (La), lipid peroxide (LP), interleukin-6 (IL-6), and activity of creatine phosphokinase (CPK) were measured before and after the exercise was finished and the tourniquet was released. Concentrations of GH, NE, and La consistently showed marked, transient increases after the exercise with occlusion, whereas they did not change a great deal after the exercise without occlusion (control) done at the same intensity and quantity. Notably, concentration of GH reached a level approximately 290 times as high as that of the resting level 15 min after the exercise. IL-6 concentration showed a much more gradual increase and was maintained at a slightly higher level than in the control even 24 h after exercise. Concentrations of LP and CPK showed no significant change. The results suggest that extremely light resistance exercise combined with occlusion greatly stimulates the secretion of GH through regional accumulation of metabolites without considerable tissue damage.  相似文献   
970.
Glial activation contiguous to deposits of amyloid peptide (Abeta) is a characteristic feature in Alzheimer's disease. We performed complementary in vitro and in vivo experiments to study the extent, kinetics, and mechanisms of microglial generation of nitric oxide (NO) induced by challenge with Abeta. We showed that Abeta fibrils dose-dependently induced a marked release of stable metabolites of NO in vivo that was strikingly similar regarding extent and temporal profile to the one in the parallel designed microglial cell culture experiments. However, costimulation with interferon gamma, which was a prerequisite for Abeta-induced NO generation in vitro, was not required in vivo, demonstrating that factors are present in the living brain that activate glial cells synergistically with Abeta. Therefore, in Alzheimer's disease, deposits of Abeta fibrils alone may be sufficient to induce a chronic release of neurotoxic microglial products, explaining the progressive neurodegeneration associated with this disease. Our observation that systemic administration of selective iNOS inhibitors abolishes Abeta-induced NO generation in vivo may have implications for therapy of Alzheimer's disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号