首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2967篇
  免费   198篇
  国内免费   2篇
  2022年   12篇
  2021年   33篇
  2020年   17篇
  2019年   19篇
  2018年   25篇
  2017年   24篇
  2016年   49篇
  2015年   77篇
  2014年   86篇
  2013年   146篇
  2012年   149篇
  2011年   142篇
  2010年   94篇
  2009年   87篇
  2008年   172篇
  2007年   161篇
  2006年   143篇
  2005年   150篇
  2004年   155篇
  2003年   128篇
  2002年   137篇
  2001年   112篇
  2000年   104篇
  1999年   65篇
  1998年   34篇
  1997年   31篇
  1996年   26篇
  1995年   33篇
  1994年   18篇
  1993年   19篇
  1992年   57篇
  1991年   60篇
  1990年   46篇
  1989年   79篇
  1988年   59篇
  1987年   43篇
  1986年   42篇
  1985年   54篇
  1984年   24篇
  1983年   31篇
  1982年   26篇
  1981年   11篇
  1980年   15篇
  1979年   20篇
  1978年   15篇
  1977年   16篇
  1975年   12篇
  1973年   16篇
  1972年   11篇
  1968年   9篇
排序方式: 共有3167条查询结果,搜索用时 312 毫秒
771.
Verotoxin (VT)-producing Escherichia coli (E. coli) O157:H7 infections are frequently complicated by thrombotic angiopathy, hemolytic uremic syndrome (HUS) and neurological symptoms. The present data demonstrate that VT-1 (Shiga toxin) stimulation of macrophage-like THP-1 cells up-regulates the activity, antigen and mRNA levels of tissue factor (TF), a key cofactor of the coagulation-inflammation-thrombosis circuit. This up-regulation is accompanied by phosphorylation of phosphatidylinositol 3-kinase (PI3-kinase), IkappaB kinase beta (IKKbeta) and extracellular signal-regulated kinase 2 (ERK2). Changes in TF mRNA levels were in parallel with the activation of NF-kappaB/Rel and Egr-1 activation, but not with AP-1. Inhibition of PI3-kinase attenuated VT-1-induced phosphorylation of IKKbeta and ERK2, and the up-regulation of TF mRNA levels. VT-1 stimulation rapidly activated c-Yes tyrosine kinase, a member of the Src family. Treatment of the cells with c-Yes antisense oligos attenuated the VT-1-induced phosphorylation of PI3-kinase, IKKbeta and ERK2, activations of NF-kappaB/Rel and Egr-1, and up-regulation of TF mRNA levels. These results suggest that VT-1-induced macrophage stimulation activates c-Yes, which then up-regulates TF expression through activation of the IKKbeta/proteasome/NF-kappaB/Rel and MEK/ERK2/Egr-1 pathways via activation of PI3-kinase. Induction of macrophage TF expression by VT-1 may play an important role in the acceleration of the coagulation-inflammation-thrombosis circuit during infections by VT-producing E. coli.  相似文献   
772.
Hydrogenobacter thermophilus TK-6 is a thermophilic, hydrogen-oxidizing bacterium that fixes carbon dioxide as a sole carbon source via the reductive tricarboxylic acid cycle. 2-Oxoglutarate:ferredoxin oxidoreductase (OGOR) is one of the key enzymes in the pathway. Strain TK-6 has at least two isozymes of OGOR, namely For and Kor. These OGORs showed different expression patterns under aerobic conditions than under anaerobic conditions. In this work, we developed a homologous recombination method for Hydrogenobacter, and constructed a For mutant and a Kor mutant. Observation of phenotypes of the mutant strains showed that Kor was essential for anaerobic growth and that For activity supported robust aerobic growth of the organism.  相似文献   
773.
This study evaluates whether Spirulina, including its components such as phycocyanin, enhances or sustains immune functions by promoting immune competent-cell proliferation or differentiation. The effects of Spirulina of a hot-water extract (SpHW), phycocyanin (Phyc), and cell-wall component extract (SpCW) on proliferation of bone marrow cells and induction of colony-forming activity in mice were investigated. The Spirulina extracts, SpHW, Phyc, and SpCW, enhanced proliferation of bone-marrow cells and induced colony-forming activity in the spleen-cell culture supernatant. Granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-3 (IL-3) were detected in the culture supernatant of the spleen cells stimulated with the Spirulina extracts. Bone marrow-cell colony formation in soft-agar assay was also significantly induced by the blood samples and the culture supernatants of the spleen and Peyer's patch cells of the mice which ingested Spirulina extracts orally for 5 weeks in in vivo study. Ratios of neutrophils and lymphocytes in the peripheral blood and bone marrow, consequently, increased in the mice. Spirulina may have potential therapeutic benefits for improvement of weakened immune functions caused by, for example, the use of anticancer drugs.  相似文献   
774.
Arbuscular Mycorrhizal (AM) fungi enhance terrestrial plant growth by forming a symbiotic relationship with the roots of its host plant. A growth stimulant for AM fungi was isolated from a brown alga Laminaria japonica Areschoug. The active substance for in vitro AM hyphal growth was isolated from 75% methanol extracts of L. japonica using a succession of chromatographic procedures, including flash chromatography equipped with an octa decyl silane (ODS) column, gel filtration chromatography and HPLC using an ODS column. Spores of Gigaspora margarita Becker & Hall, an AM fungus, were exposed to the compound in vitro, and hyphal growth of G. margarita was measured after two weeks of incubation. At 40 mg L−1, the compound significantly stimulated the in vitro hyphal growth of G. margarita, compared to the control. This compound was elucidated as 5′-deoxy-5′-methylamino-adenosine by EIMS and NMR spectrum.  相似文献   
775.
We have previously reported on the ubiquitylation and degradation of hepatitis C virus core protein. Here we demonstrate that proteasomal degradation of the core protein is mediated by two distinct mechanisms. One leads to polyubiquitylation, in which lysine residues in the N-terminal region are preferential ubiquitylation sites. The other is independent of the presence of ubiquitin. Gain- and loss-of-function analyses using lysineless mutants substantiate the hypothesis that the proteasome activator PA28γ, a binding partner of the core, is involved in the ubiquitin-independent degradation of the core protein. Our results suggest that turnover of this multifunctional viral protein can be tightly controlled via dual ubiquitin-dependent and -independent proteasomal pathways.Hepatitis C virus (HCV) core protein, whose amino acid sequence is highly conserved among different HCV strains, not only is involved in the formation of the HCV virion but also has a number of regulatory functions, including modulation of signaling pathways, cellular and viral gene expression, cell transformation, apoptosis, and lipid metabolism (reviewed in references 9 and 15). We have previously reported that the E6AP E3 ubiquitin (Ub) ligase binds to the core protein and plays an important role in polyubiquitylation and proteasomal degradation of the core protein (22). Another study from our group identified the proteasome activator PA28γ/REG-γ as an HCV core-binding partner, demonstrating degradation of the core protein via a PA28γ-dependent pathway (16, 17). In this work, we further investigated the molecular mechanisms underlying proteasomal degradation of the core protein and found that in addition to regulation by the Ub-mediated pathway, the turnover of the core protein is also regulated by PA28γ in a Ub-independent manner.Although ubiquitylation of substrates generally requires at least one Lys residue to serve as a Ub acceptor site (5), there is no consensus as to the specificity of the Lys targeted by Ub (4, 8). To determine the sites of Ub conjugation in the core protein, we used site-directed mutagenesis to replace individual Lys residues or clusters of Lys residues with Arg residues in the N-terminal 152 amino acids (aa) of the core (C152), within which is contained all seven Lys residues (Fig. (Fig.1A).1A). Plasmids expressing a variety of mutated core proteins were generated by PCR and inserted into the pCAGGS (18). Each core-expressing construct was transfected into human embryonic kidney 293T cells along with the pMT107 (25) encoding a Ub moiety tagged with six His residues (His6). Transfected cells were treated with the proteasome inhibitor MG132 for 14 h to maximize the level of Ub-conjugated core intermediates by blocking the proteasome pathway and were harvested 48 h posttransfection. His6-tagged proteins were purified from the extracts by Ni2+-chelation chromatography. Eluted protein and whole lysates of transfected cells before purification were analyzed by Western blotting using anticore antibodies (Fig. (Fig.1B).1B). Mutations replacing one or two Lys residues with Arg in the core protein did not affect the efficiency of ubiquitylation: detection of multiple Ub-conjugated core intermediates was observed in the mutant core proteins comparable to the results seen with the wild-type core protein as previously reported (23). In contrast, a substitution of four N-terminal Lys residues (C152K6-23R) caused a significant reduction in ubiquitylation (Fig. (Fig.1B,1B, lane 9). Multiple Ub-conjugated core intermediates were not detected in the Lys-less mutant (C152KR), in which all seven Lys residues were replaced with Arg (Fig. (Fig.1B,1B, lane 11). These results suggest that there is not a particular Lys residue in the core protein to act as the Ub acceptor but that more than one Lys located in its N-terminal region can serve as the preferential ubiquitylation site. In rare cases, Ub is known to be conjugated to the N terminus of proteins; however, these results indicate that this does not occur within the core protein.Open in a separate windowFIG. 1.In vivo ubiquitylation of HCV core protein. (A) The HCV core protein (N-terminal 152 aa) is represented on the top. The positions of the amino acid residues of the core protein are indicated above the bold lines. The positions of the seven Lys residues in the core are marked by vertical ticks. Substitution of Lys with Arg (R) is schematically depicted. (B) Detection of ubiquitylated forms of the core proteins. The transfected cells with core expression plasmids and pMT107 were treated with the proteasome inhibitor MG132 and harvested 48 h after transfection. His6-tagged proteins were purified and subsequently analyzed by Western blot analysis using anticore antibody (upper panel). Core proteins conjugated to a number of His6-Ub are denoted with asterisks. Whole lysates of transfected cells before purification were also analyzed (lower panel). Lanes 1 to 11, C152 to C152KR, as indicated for panel A. Lane 12; empty vector.To investigate how polyubiquitylation correlates with proteasome degradation of the core protein, we performed kinetic analysis of the wild-type and mutated core proteins by use of the Ub protein reference (UPR) technique, which can compensate for data scatter of sample-to-sample variations such as levels of expression (10, 24). Fusion proteins expressed from UPR-based constructs (Fig. (Fig.2A)2A) were cotranslationally cleaved by deubiquitylating enzymes, thereby generating equimolar quantities of the core proteins and the reference protein, dihydrofolate reductase-hemagglutinin (DHFR-HA) tag-modified Ub, in which the Lys at aa 48 was replaced by Arg to prevent its polyubiquitylation (UbR48). After 24 h of transfection with UPR constructs, cells were treated with cycloheximide and the amounts of core proteins and DHFR-HA-UbR48 at the indicated time points were determined by Western blot analysis using anticore and anti-HA antibodies. The mature form of the core protein, aa 1 to 173 (C173) (13, 20), and C152 were degraded with first-order kinetics (Fig. 2B and D). MG132 completely blocked the degradation of C173 and C152 (Fig. (Fig.2B),2B), and C152K6-23R and C152KR were markedly stabilized (Fig. (Fig.2C).2C). The half-lives of C173 and C152 were calculated to be 5 to 6 h, whereas those of C152K6-23R and C152KR were calculated to be 22 to 24 h (Fig. (Fig.2D),2D), confirming that the Ub plays an important role in regulating degradation of the core protein. Nevertheless, these results also suggest possible involvement of the Ub-independent pathway in the turnover of the core protein, as C152KR is more destabilized than the reference protein (Fig. (Fig.2C2C and and2D2D).Open in a separate windowFIG. 2.Kinetic analysis of degradation of HCV core proteins. (A) The fusion constructs used in the UPR technique. Open boxes indicate the DHFR sequence, which is extended at the C terminus by a sequence containing the HA epitope (hatched boxes). UbR48 moieties bearing the Lys-Arg substitution at aa 48 are represented by open ellipses. Bold lines indicate the regions of the core protein. The amino acid positions of the core protein are indicated above the bold lines. The arrows indicate the sites of in vivo cleavage by deubiquitylating enzymes. (B and C) Turnover of the core proteins. After a 24-h transfection with each UPR construct, cells were treated with 50 μg of cycloheximide/ml in the presence or absence of 10 μM MG132 for the different time periods indicated. Cells were lysed at the different time points indicated, followed by evaluation via sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis using antibodies against the core protein and HA. (D) Quantitation of the data shown in panels B and C. At each time point, the ratio of band intensity of the core protein relative to the reference DHFR-HA-UbR48 was determined by densitometry and is plotted as a percentage of the ratio at time zero.We have shown that PA28γ specifically binds to the core protein and is involved in its degradation (16, 17). Recent studies demonstrated that PA28γ is responsible for Ub-independent degradation of the steroid receptor coactivator SRC-3 and cell cycle inhibitors such as p21 (3, 11, 12). Thus, we next investigated the possibility of PA28γ involvement in the degradation of either C152KR or C152. Since C152KR carries two amino acid substitutions in the PA28γ-binding region (aa 44 to 71) (17), we tested the influence of the mutations of C152KR on the interaction with PA28γ by use of a coimmunoprecipitation assay. When Flag-tagged PA28γ (F-PA28γ) was expressed in cells along with C152 or C152KR, F-PA28γ precipitated along with both C152 and C152KR, indicating that PA28γ interacts with both core proteins (Fig. (Fig.3A).3A). Figure Figure3B3B reveals the effect of exogenous expression of F-PA28γ on the steady-state levels of C152 and C152KR. Consistent with previous data (17), the expression level of C152 was decreased to a nearly undetectable level in the presence of PA28γ (Fig. (Fig.3B,3B, lanes 1 and 3). Interestingly, exogenous expression of PA28γ led to a marked reduction in the amount of C152KR expressed (Fig. (Fig.3B,3B, lanes 5 and 7). Treatment with MG132 increased the steady-state level of the C152KR in the presence of F-PA28γ as well as the level of C152 (Fig. (Fig.3B,3B, lanes 4 and 8).Open in a separate windowFIG. 3.PA28γ-dependent degradation of the core protein. (A) Interaction of the core protein with PA28γ. Cells were cotransfected with the wild-type (C152) or Lys-less (C152KR) core expression plasmid in the presence of a Flag-PA28γ (F-PA28γ) expression plasmid or an empty vector. The transfected cells were treated with MG132. After 48 h, the cell lysates were immunoprecipitated with anti-Flag antibody and visualized by Western blotting with anticore antibodies. Western blot analysis of whole cell lysates was also performed. (B) Degradation of the wild-type and Lys-less core proteins via the PA28γ-dependent pathway. Cells were transfected with the UPR construct with or without F-PA28γ. In some cases, cells were treated with 10 μM MG132 for 14 h before harvesting. Western blot analysis was performed using anticore, anti-HA, and anti-Flag antibodies. (C) After 24 h of transfection with UPR-C152KR and UPR-C191KR with or without F-PA28γ (an empty vector), cells were treated with 50 μg of cycloheximide/ml for different time periods as indicated (chase time). Western blot analysis was performed using anticore and anti-HA antibodies. The precursor core protein and the core that was processed, presumably by signal peptide peptidase, are denoted by open and closed triangles, respectively.We further investigated whether PA28γ affects the turnover of Lys-less core protein through time course experiments. C152KR was rapidly destabilized and almost completely degraded in a 3-h chase experiment using cells overexpressing F-PA28γ (Fig. (Fig.3C,3C, left panels). A similar result was obtained using an analogous Lys-less mutant of the full-length core protein C191KR (Fig. (Fig.3C,3C, right panels), thus demonstrating that the Lys-less core protein undergoes proteasomal degradation in a PA28γ-dependent manner. These results suggest that PA28γ may play a role in accelerating the turnover of the HCV core protein that is independent of ubiquitylation.Finally, we examined gain- and loss-of-function of PA28γ with respect to degradation of full-length wild-type (C191) and mutated (C191KR) core proteins in human hepatoma Huh-7 cells. As expected, exogenous expression of PA28γ or E6AP caused a decrease in the C191 steady-state levels (Fig. (Fig.4A).4A). In contrast, the C191KR level was decreased with expression of PA28γ but not of E6AP. We further used RNA interference to inhibit expression of PA28γ or E6AP. An increase in the abundance of C191KR was observed with PA28γ small interfering RNA (siRNA) but not with E6AP siRNA (Fig. (Fig.4B).4B). An increase in the C191 level caused by the activity of siRNA against PA28γ or E6AP was confirmed as well.Open in a separate windowFIG. 4.Ub-dependent and Ub-independent degradation of the full-length core protein in hepatic cells. (A) Huh-7 cells were cotransfected with plasmids for the full-length core protein (C191) or its Lys-less mutant (C191KR) in the presence of F-PA28γ or HA-tagged-E6AP expression plasmid (HA-E6AP). After 48 h, cells were lysed and Western blot analysis was performed using anticore, anti-HA, anti-Flag, or anti-GAPDH. (B) Huh-7 cells were cotransfected with core expression plasmids along with siRNA against PA28γ or E6AP or with negative control siRNA. Cells were harvested 72 h after transfection and subjected to Western blot analysis.Taking these results together, we conclude that turnover of the core protein is regulated by both Ub-dependent and Ub-independent pathways and that PA28γ is possibly involved in Ub-independent proteasomal degradation of the core protein. PA28 is known to specifically bind and activate the 20S proteasome (19). Thus, PA28γ may function by facilitating the delivery of the core protein to the proteasome in a Ub-independent manner.Accumulating evidence suggests the existence of proteasome-dependent but Ub-independent pathways for protein degradation, and several important molecules, such as p53, p73, Rb, SRC-3, and the hepatitis B virus X protein, have two distinct degradation pathways that function in a Ub-dependent and Ub-independent manner (1, 2, 6, 7, 14, 21, 27). Recently, critical roles for PA28γ in the Ub-independent pathway have been demonstrated; SRC-3 and p21 can be recognized by the 20S proteasome independently of ubiquitylation through their interaction with PA28γ (3, 11, 12). It has also been reported that phosphorylation-dependent ubiquitylation mediated by GSK3 and SCF is important for SRC-3 turnover (26). Nevertheless, the precise mechanisms underlying turnover of most of the proteasome substrates that are regulated in both Ub-dependent and Ub-independent manners are not well understood. To our knowledge, the HCV core protein is the first viral protein studied that has led to identification of key cellular factors responsible for proteasomal degradation via dual distinct mechanisms. Although the question remains whether there is a physiological significance of the Ub-dependent and Ub-independent degradation of the core protein, it is reasonable to consider that tight control over cellular levels of the core protein, which is multifunctional and essential for viral replication, maturation, and pathogenesis, may play an important role in representing the potential for its functional activity.  相似文献   
776.
Rhamnogalacturonan II (RG-II) is a structurally complex cell wall pectic polysaccharide. Despite its complexity, both the structure of RG-II and its ability to dimerise via a borate diester are conserved in vascular plants suggesting that RG-II has a fundamental role in primary cell wall organisation and function. The selection and analysis of new mutants affected in RG-II formation represents a promising strategy to unravel these functions and to identify genes encoding enzymes involved in RG-II biosynthesis. In this paper, a novel fingerprinting strategy is described for the screening of RG-II mutants based on the mild acid hydrolysis of RG-II coupled to the analysis of the resulting fragments by mass spectrometry. This methodology was developed using RG-II fractions isolated from citrus pectins and then validated for RG-II isolated from the Arabidopsis mur1 mutant and irx10 irx10-like double mutant.  相似文献   
777.

Background

The Src-family non-receptor-type tyrosine kinase Lyn, which is often associated with chemotherapeutic resistance in cancer, localizes not only to the plasma membrane but also Golgi membranes. Recently, we showed that Lyn, which is synthesized in the cytosol, is transported from the Golgi to the plasma membrane along the secretory pathway. However, it is still unclear how Golgi targeting of newly synthesized Lyn is regulated.

Methods

Subcellular localization of Lyn and its mutants was determined by confocal microscopy.

Results

We show that the kinase domain, but not the SH3 and SH2 domains, of Lyn is required for the targeting of Lyn to the Golgi, whereas the N-terminal lipids of the Lyn SH4 domain are not sufficient for its Golgi targeting. Although intact Lyn, which colocalizes with caveolin-positive Golgi membranes, can traffic toward the plasma membrane, kinase domain-deleted Lyn is immobilized on caveolin-negative Golgi membranes.

General significance

Besides the SH4 domain, the Lyn kinase domain is important for targeting of newly synthesized Lyn to the Golgi, especially caveolin-positive transport membranes. Our results provide a novel role of the Lyn catalytic domain in the Golgi targeting of newly synthesized Lyn in a manner independent of its kinase activity.  相似文献   
778.
The purpose of the present study was to identify genetic variants that confer susceptibility to chronic kidney disease (CKD) in Japanese individuals with metabolic syndrome. The study population comprised 2150 Japanese individuals with metabolic syndrome, including 411 subjects with CKD [estimated glomerular filtration rate (eGFR) < 50 mL/min/1.73m2] and 1739 controls (eGFR ≥ 60 mL/min/1.73m2). The genotypes for 100 polymorphisms of 80 candidate genes were determined. The chi-square test, multivariable logistic regression analysis with adjustment for covariates, as well as a stepwise forward selection procedure revealed that nine polymorphisms of APOE, ABCA1, PTGS1, TNF, CPB2, AGTR1, OR13G1, and GNB3 were associated (P < 0.05) with the prevalence of CKD. Among these polymorphisms, the ? 219G  T polymorphism of APOE (rs405509) was most significantly associated with CKD in Japanese individuals with metabolic syndrome.  相似文献   
779.
780.
The flagellin of Pseudomonas syringae pv. tabaci is a glycoprotein that contains O-linked oligosaccharides composed of rhamnosyl and 4,6-dideoxy-4-(3-hydroxybutanamido)-2-O-methylglucosyl residues. These O-linked glycans are released by hydrazinolysis and then labeled at their reducing ends with 2-aminopyridine (PA). A PA-labeled trisaccharide and a PA-labeled tetrasaccharide are isolated by normal-phase high-performance liquid chromatography. These oligosaccharides are structurally characterized using mass spectrometry and NMR spectroscopy. Our data show that P. syringae pv. tabaci flagellin is glycosylated with a tetrasaccharide, 4,6-dideoxy-4-(3-hydroxybutanamido)-2-O-methyl-Glcp-(1→3)-α-l-Rhap-(1→2)-α-l-Rhap-(1→2)-α-l-Rha-(1→, as well a trisaccharide, 4,6-dideoxy-4-(3-hydroxybutanamido)-2-O-methyl-Glcp-(1→3)-α-l-Rhap-(1→2)-α-l-Rha-(1→, which was identified in a previous study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号