首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1782篇
  免费   112篇
  国内免费   1篇
  2023年   5篇
  2022年   14篇
  2021年   13篇
  2020年   9篇
  2019年   15篇
  2018年   15篇
  2017年   19篇
  2016年   28篇
  2015年   43篇
  2014年   48篇
  2013年   152篇
  2012年   101篇
  2011年   104篇
  2010年   58篇
  2009年   69篇
  2008年   106篇
  2007年   99篇
  2006年   103篇
  2005年   111篇
  2004年   111篇
  2003年   108篇
  2002年   106篇
  2001年   36篇
  2000年   32篇
  1999年   29篇
  1998年   23篇
  1997年   29篇
  1996年   20篇
  1995年   17篇
  1994年   12篇
  1993年   11篇
  1992年   25篇
  1991年   27篇
  1990年   23篇
  1989年   24篇
  1988年   12篇
  1987年   11篇
  1986年   14篇
  1985年   16篇
  1984年   10篇
  1983年   8篇
  1982年   6篇
  1981年   12篇
  1980年   6篇
  1979年   10篇
  1978年   6篇
  1977年   5篇
  1972年   4篇
  1967年   5篇
  1963年   4篇
排序方式: 共有1895条查询结果,搜索用时 16 毫秒
141.

Background

Ionizing irradiation causes not only growth arrest and cell death, but also release of growth factors or signal transmitters, which promote cancer malignancy. Extracellular ATP controls cancer growth through activation of purinoceptors. However, there is no report of radiation-induced ATP release from cancer cells. Here, we examined γ-irradiation-induced ATP release and its mechanism in B16 melanoma.

Methods

Extracellular ATP was measured by luciferin–luciferase assay. To investigate mechanism of radiation-induced ATP release, we pharmacologically inhibited the ATP release and established stable P2X7 receptor-knockdown B16 melanoma cells using two short hairpin RNAs targeting P2X7 receptor.

Results

Cells were exposed to 0.5–8 Gy of γ-rays. Extracellular ATP was increased, peaking at 5 min after 0.5 Gy irradiation. A selective P2X7 receptor channel antagonist, but not anion transporter inhibitors, blocked the release of ATP. Further, radiation-induced ATP release was significantly decreased in P2X7 receptor-knockdown cells. Our results indicate that γ-irradiation evokes ATP release from melanoma cells, and P2X7 receptor channel plays a significant role in mediating the ATP release.

General Significance

We suggest that extracellular ATP could be a novel intercellular signaling molecule released from cancer cells when cells are exposed to ionizing radiation.  相似文献   
142.
143.
We examined a role for DNA polymerase β (Pol β) in mammalian long patch base excision repair (LP BER). Although a role for Pol β is well known in single-nucleotide BER, information on this enzyme in the context of LP BER has been limited. To examine the question of Pol β involvement in LP BER, we made use of nucleotide excision repair-deficient human XPA cells expressing UVDE (XPA-UVDE), which introduces a nick directly 5′ to the cyclobutane pyrimidine dimer or 6-4 photoproduct, leaving ends with 3′-OH and 5′-phosphorylated UV lesion. We observed recruitment of GFP-fused Pol β to focal sites of nuclear UV irradiation, consistent with a role of Pol β in repair of UV-induced photoproducts adjacent to a strand break. This was the first evidence of Pol β recruitment in LP BER in vivo. In cell extract, a 5′-blocked oligodeoxynucleotide substrate containing a nicked 5′-cyclobutane pyrimidine dimer was repaired by Pol β-dependent LP BER. We also demonstrated Pol β involvement in LP BER by making use of mouse cells that are double null for XPA and Pol β. These results were extended by experiments with oligodeoxynucleotide substrates and purified human Pol β.  相似文献   
144.
Presently there is no serum biomarker of rhabdomyosarcoma (RMS). Several studies have shown that profiles of microRNA (miRNA) expression differ among tumor types. Here we evaluated the feasibility of using muscle-specific miRNAs (miR-1, -133a, -133b and -206) as biomarkers of RMS. Expression of muscle-specific miRNAs, especially miR-206, was significantly higher in RMS cell lines than in other tumor cell lines, as well as in RMS tumor specimens. Further, serum levels of muscle-specific miRNAs were significantly higher in patients with RMS tumors than in patients with non-RMS tumors. Normalized serum miR-206 expression level could be used to differentiate between RMS and non-RMS tumors, with sensitivity of 1.0 and specificity of 0.913. These results raise the possibility of using circulating muscle-specific miRNAs, especially miR-206, as landmark biomarkers for RMS.  相似文献   
145.
The insertion site of the tendon to the skeletal element is hypovascular and is one of the most common sites of dysfunction in the musculoskeletal system. However, the resident cells have been poorly defined due to a lack of a specific marker for tenocytes. We previously reported that Tenomodulin (Tnmd) and Chondromodulin-1 (Chm1) are homologous angiogenesis inhibitors and predominantly expressed in the avascular region of tendons and cartilage, respectively. In this study, we analyzed the expression of Tnmd, Chm1, alpha 1 chain of the type I collagen (Col1a1) and alpha 1 chain of the type II collagen (Col2a1) at the insertion site of the Achilles, patellar, or rotator cuff tendons of 1-week-old rabbits by in situ hybridization analysis. Tnmd was co-expressed with Col1a1 in tenocytes of these tendons, while Chm1 and Col2a1 were detected in chondrocytes of the hyaline cartilage. Interestingly, the cell population between Tnmd/Col1a1 positive tenocytes and Chm1/Col2a1 positive chondrocytes expressed Col1a1 but none of the other markers (Tnmd, Chm1, and Col2a1). Red blood cells were exclusively present at the interface between the tendon substance and cartilage in the insertion site of the Achilles tendon. Lack of Tnmd and Chm1 in this newly characterized cell population may allow the transitional zone between the poorly vascularized tendon and cartilage to establish the unique vascular pattern for blood supply.  相似文献   
146.
It is important to evaluate the health effects of low-dose-rate or low-dose radiation in combination with chemicals as humans are exposed to a variety of chemical agents. Here, we examined combined genotoxic effects of low-dose-rate radiation and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), the most carcinogenic tobacco-specific nitrosamine, in the lung of gpt delta transgenic mice. In this mouse model, base substitutions and deletions can be separately analyzed by gpt and Spi- selections, respectively. Female gpt delta mice were either treated with gamma-irradiation alone at a dose rate of 0.5, 1.0 or 1.5 mGy/h for 22 h/day for 31 days or combined with NNK treatments at a dose of 2 mg/mouse/day, i.p. for four consecutive days in the middle course of irradiation. In the gpt selection, the NNK treatments enhanced the mutation frequencies (MFs) significantly, but no obvious combined effects of gamma-irradiation were observable at any given radiation dose. In contrast, NNK treatments appeared to suppress the Spi- large deletions. In the Spi- selection, the MFs of deletions more than 1 kb in size increased in a dose-dependent manner. When NNK treatments were combined, the dose-response curve became bell-shaped where the MF at the highest radiation dose decreased substantially. These results suggest that NNK treatments may elicit an adaptive response that eliminates cells bearing radiation-induced double-strand breaks in DNA. Possible mechanisms underlying the combined genotoxicity of radiation and NNK are discussed, and the importance of evaluation of combined genotoxicity of more than one agent is emphasized.  相似文献   
147.
Evolutionary control of leaf element composition in plants   总被引:5,自引:1,他引:4  
Leaf nitrogen (N) and phosphorus (P) concentrations are correlated in plants. Higher-level phylogenetic effects can influence leaf N and P. By contrast, little is known about the phylogenetic variation in the leaf accumulation of most other elements in plant tissues, including elements with quantitatively lesser roles in metabolism than N, and elements that are nonessential for plant growth. Here the leaf composition of 42 elements is reported from a statistically unstructured data set comprising over 2000 leaf samples, representing 670 species and 138 families of terrestrial plants. Over 25% of the total variation in leaf element composition could be assigned to the family level and above for 21 of these elements. The remaining variation corresponded to differences between species within families, to differences between sites which were likely to be caused by soil and climatic factors, and to variation caused by sampling techniques. While the majority of variation in leaf mineral composition is undoubtedly associated with nonevolutionary factors, identifying higher-level phylogenetic variation in leaf elemental composition increases our understanding of terrestrial nutrient cycles and the transfer of toxic elements from soils to living organisms. Identifying mechanisms by which different plant families control their leaf elemental concentration remains a challenge.  相似文献   
148.
The P2X7 receptor (P2X7R) is an ATP-gated ion channel highly expressed in microglia. P2X7R plays important roles in inflammatory responses in the brain. However, little is known about the mechanisms regulating its functions in microglia. Lysophosphatidylcholine (LPC), an inflammatory phospholipid that promotes microglial activation, may have some relevance to P2X7R signaling in terms of microglial function. In this study, we examined its effects on P2X7R signaling in a mouse microglial cell line (MG6) and primary microglia. LPC facilitated the sustained increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) through P2X7R channels activated by ATP or BzATP. The potentiated increase in [Ca(2+)](i) was actually inhibited by P2X7R antagonists, brilliant blue G and oxidized ATP. The potentiating effect of LPC was not observed with P2Y receptor systems, which are also expressed in MG6 cells. G2A, a receptor for LPC, was expressed in MG6 cells, but not involved in the facilitating effect of LPC on the P2X7R-mediated change in [Ca(2+)](i). Furthermore, LPC enhanced the P2X7R-associated formation of membrane pores and the activation of p44/42 mitogen-activated protein kinase. These results suggest that LPC may regulate microglial functions in the brain by enhancing the sensitivity of P2X7R.  相似文献   
149.
150.
Wang X  Uto T  Akagi T  Akashi M  Baba M 《Journal of virology》2007,81(18):10009-10016
The mainstream of recent anti-AIDS vaccines is a prime/boost approach with multiple doses of the target DNA of human immunodeficiency virus type 1 (HIV-1) and recombinant viral vectors. In this study, we have attempted to construct an efficient protein-based vaccine using biodegradable poly(gamma-glutamic acid) (gamma-PGA) nanoparticles (NPs), which are capable of inducing potent cellular immunity. A significant expansion of CD8+ T cells specific to the major histocompatibility complex class I-restricted gp120 epitope was observed in mice intranasally immunized once with gp120-carrying NPs but not with gp120 alone or gp120 together with the B-subunit of cholera toxin. Both the gp120-encapsulating and -immobilizing forms of NPs could induce antigen-specific spleen CD8+ T cells having a functional profile of cytotoxic T lymphocytes. Long-lived memory CD8+ T cells could also be elicited. Although a substantial decay in the effector memory T cells was observed over time in the immunized mice, the central memory T cells remained relatively constant from day 30 to day 238 after immunization. Furthermore, the memory CD8+ T cells rapidly expanded with boosting with the same immunogen. In addition, gamma-PGA NPs were found to be a much stronger inducer of antigen-specific CD8+ T-cell responses than nonbiodegradable polystyrene NPs. Thus, gamma-PGA NPs carrying various HIV-1 antigens may have great potential as a novel priming and/or boosting tool in current vaccination regimens for the induction of cellular immune responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号