首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1613篇
  免费   106篇
  1719篇
  2021年   19篇
  2020年   13篇
  2019年   14篇
  2018年   22篇
  2017年   22篇
  2016年   26篇
  2015年   26篇
  2014年   42篇
  2013年   96篇
  2012年   77篇
  2011年   73篇
  2010年   53篇
  2009年   44篇
  2008年   83篇
  2007年   66篇
  2006年   84篇
  2005年   59篇
  2004年   54篇
  2003年   63篇
  2002年   63篇
  2001年   63篇
  2000年   54篇
  1999年   59篇
  1998年   37篇
  1997年   20篇
  1996年   13篇
  1995年   14篇
  1994年   9篇
  1993年   12篇
  1992年   36篇
  1991年   34篇
  1990年   32篇
  1989年   33篇
  1988年   19篇
  1987年   18篇
  1986年   28篇
  1985年   20篇
  1984年   26篇
  1983年   23篇
  1982年   9篇
  1981年   13篇
  1980年   13篇
  1979年   19篇
  1978年   12篇
  1976年   7篇
  1974年   11篇
  1973年   8篇
  1972年   14篇
  1968年   9篇
  1967年   8篇
排序方式: 共有1719条查询结果,搜索用时 15 毫秒
101.
102.
Cell-based therapies using genetically engineered lymphocytes expressing antigen-specific T cell receptors (TCRs) hold promise for the treatment of several types of cancers. Almost all studies using this modality have focused on transfer of TCR from CD8 cytotoxic T lymphocytes (CTLs). The transfer of TCR from innate lymphocytes to other lymphocytes has not been studied. In the current study, innate and adaptive lymphocytes were transfected with the human NKT cell-derived TCRα and β chain mRNA (the Vα24 and Vβ11 TCR chains). When primary T cells transfected with NKT cell-derived TCR were subsequently stimulated with the NKT ligand, α-galactosylceramide (α-GalCer), they secreted IFN-γ in a ligand-specific manner. Furthermore when γδT cells were transfected with NKT cell-derived TCR mRNA, they demonstrated enhanced proliferation, IFN-γ production and antitumor effects after α-GalCer stimulation as compared to parental γδT cells. Importantly, NKT cell TCR-transfected γδT cells responded to both NKT cell and γδT cell ligands, rendering them bi-potential innate lymphocytes. Because NKT cell receptors are unique and universal invariant receptors in humans, the TCR chains do not yield mispaired receptors with endogenous TCR α and β chains after the transfection. The transfection of NKT cell TCR has the potential to be a new approach to tumor immunotherapy in patients with various types of cancer.  相似文献   
103.
Ovulation induced by hCG in rabbits was reduced significantly (P less than 0.005) by sulpiride-induced hyperprolactinaemia. The pre- and post-ovulatory increases in peripheral and ovarian venous progesterone (but not oestradiol or testosterone) were suppressed in the treated animals. The condition of hyperprolactinaemia also prevented the usual changes in 2,4-dinitrophenyl-Pro-Gln-Gly-Ile-Ala-Gly-Gln-D-Arg-OH peptidase (DNP-peptidase) and alpha-N-benzoyl-DL-Arg-beta-naphthylamide hydrolase (BANA-hydrolase) activities in follicular tissue that had been stimulated by an ovulatory dose of hCG. These results suggest that inhibition of progesterone production and collagenolytic enzyme activity by sulpiride-induced hyperprolactinaemia may be responsible for the ovulatory dysfunction that occurs when a mammal has a high level of circulating prolactin.  相似文献   
104.
Genes of the MHC show the strongest genetic association with multiple sclerosis (MS), but the underlying mechanisms have remained unresolved. In this study, we asked whether the MS-associated MHC class II molecules, HLA-DRB1*1501, HLA-DRB5*0101, and HLA-DRB1*0401, contribute to autoimmune CNS demyelination by promoting pathogenic T cell responses to human myelin basic protein (hMBP), using three transgenic (Tg) mouse lines expressing these MHC molecules. Unexpectedly, profound T cell tolerance to the high-affinity MHC-binding hMBP82-100 epitope was observed in all Tg mouse lines. T cell tolerance to hMBP82-100 was abolished upon back-crossing the HLA-DR Tg mice to MBP-deficient mice. In contrast, T cell tolerance was incomplete for low-affinity MHC-binding hMBP epitopes. Furthermore, hMBP82-100-specific type B T cells escaped tolerance in HLA-DRB5*0101 Tg mice. Importantly, T cells specific for low-affinity MHC-binding hMBP epitopes and hMBP82-100-specific type B T cells were highly encephalitogenic. Collectively, the results show that MS-associated MHC class II molecules are highly efficient at inducing T cell tolerance to high-affinity MHC-binding epitope, whereas autoreactive T cells specific for the low-affinity MHC-binding epitopes and type B T cells can escape the induction of T cell tolerance and may promote MS.  相似文献   
105.
106.
Polycomb repressive complex 1 (PRC1) plays an essential role in the epigenetic repression of gene expression during development and cellular differentiation via multiple effector mechanisms, including ubiquitination of H2A and chromatin compaction. However, whether it regulates the stepwise progression of adipogenesis is unknown. Here, we show that FBXL10/KDM2B is an anti-adipogenic factor that is up-regulated during the early phase of 3T3-L1 preadipocyte differentiation and in adipose tissue in a diet-induced model of obesity. Interestingly, inhibition of adipogenesis does not require the JmjC demethylase domain of FBXL10, but it does require the F-box and leucine-rich repeat domains, which we show recruit a noncanonical polycomb repressive complex 1 (PRC1) containing RING1B, SKP1, PCGF1, and BCOR. Knockdown of either RING1B or SKP1 prevented FBXL10-mediated repression of 3T3-L1 preadipocyte differentiation indicating that PRC1 formation mediates the inhibitory effect of FBXL10 on adipogenesis. Using ChIP-seq, we show that FBXL10 recruits RING1B to key specific genomic loci surrounding the key cell cycle and the adipogenic genes Cdk1, Uhrf1, Pparg1, and Pparg2 to repress adipogenesis. These results suggest that FBXL10 represses adipogenesis by targeting a noncanonical PRC1 complex to repress key genes (e.g. Pparg) that control conversion of pluripotent cells into the adipogenic lineage.  相似文献   
107.
Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by the yeast strains of the genus Pseudozyma. These compounds show not only excellent surface-active properties, but also versatile biochemical actions. During a survey of new MEL producers, we found that a basidiomycetous yeast, Pseudozyma crassa, extracellularly produces three glycolipids. When glucose and oleic acid were used as the carbon source, the total amount of glycolipids reached approximately 4.6 g/L in the culture medium. The structures of these glycolipids were similar to those of well-known MEL-A, -B, and -C, respectively. Very interestingly, in all the present glycolipids, the configuration of the erythritol moiety was entirely opposite to that of conventional MELs. The present glycolipids were identified to have the carbohydrate structure of 4-O-β-d-mannopyranosyl-(2R,3S)-erythritol, stereochemically different from 4-O-β-d-mannopyranosyl-(2S,3R)-erythritol of conventional MELs. Furthermore, these new glycolipids possessed both short-chain acids (C2 or C4) and long-chain acids (C14, C16, or C18) on the mannose moiety. The major component of the present glycolipids clearly showed different interfacial and biological properties, compared to conventional MELs comprising two medium-chain acids on the mannose moiety. Accordingly, the novel MEL diastereomers produced by P. crassa should provide us with different glycolipid functions, and facilitate a broad range of applications of MELs.  相似文献   
108.
We constructed a reporter system to detect a superoxide-generating methyl viologen using SoxRS of Escherichia coli and GFP of Aequorea victoria. E. coli carrying this plasmid exhibited strong fluorescence when grown in the presence of a superoxide-generating reagent methyl viologen. The fluorescence intensity observed in the stationary phase culture of the transformant increased in response to the methyl viologen concentration in a range of 0.01 μM to 10 μM.  相似文献   
109.
For Hyphomicrobium 53-49 capable of growing under various conditions, aerobic methanol, anaerobic methanol (with denitrification), autotrophic (H2-O2-CO2), aerobic ethanol and aerobic acetate, investigation and comparison of the specific activities of the following enzymes were performed: alcohol dehydrogenase (NAD-ethanol linked and NAD-methanol linked), primary alcohol dehydrogenase, formaldehyde dehydrogenase (NAD-GSH linked and DCPIP linked), formate dehydrogenase, serine hydroxymethyl transferase, hydroxypyruvate reductase, isocitrate lyase (icl), malate lyase, malate dehydrogenase, ribulosebisphosphate (RuBP) carboxylase, phos-phoenolpyruvate (PEP) carboxykinase (ADP linked), PEP carboxylase (phosphorylating), pyruvate carboxylase (NADH linked and NADPH linked) and α-ketoglutarate carboxylase (NADH linked and NADPH linked). On the basis of the data obtained, it was concluded that during growth on methanol, aerobically and anaerobically, the icl+ serine pathway operated, while during autotrophic growth on H2-O2-CO2, CO2 was incorporated through the RuBP pathway and others, and during growth on ethanol or acetate, neither the serine pathway nor the RuBP pathway operated. The organism changed its metabolism through the regulation of the metabolic enzymes according to the growth conditions.  相似文献   
110.
Five acetic acid-sensitive mutants of Acetobacter aceti subsp. aceti no. 1023 were isolated by mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Three recombinant plasmids that complemented the mutations were isolated from a gene bank of the chromosome DNA of the parental strain constructed in Escherichia coli by using cosmid vector pMVC1. One of these plasmids (pAR1611), carrying about a 30-kilobase-pair (kb) fragment that conferred acetic acid resistance to all five mutants, was further analyzed. Subcloning experiments indicated that a 8.3-kb fragment was sufficient to complement all five mutations. To identify the mutation loci and genes involved in acetic acid resistance, insertional inactivation was performed by insertion of the kanamycin resistance gene derived from E. coli plasmid pACYC177 into the cloned 8.3-kb fragment and successive integration into the chromosome of the parental strain. The results suggested that three genes, designated aarA, aarB, and aarC, were responsible for expression of acetic acid resistance. Gene products of these genes were detected by means of overproduction in E. coli by use of the lac promoter. The amino acid sequence of the aarA gene product deduced from the nucleotide sequence was significantly similar to those of the citrate synthases (CSs) of E. coli and other bacteria. The A. aceti mutants defective in the aarA gene were found to lack CS activity, which was restored by introduction of a plasmid containing the aarA gene. A mutation in the CS gene of E. coli was also complemented by the aarA gene. These results indicate that aarA is the CS gene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号