首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11480篇
  免费   863篇
  国内免费   4篇
  12347篇
  2022年   60篇
  2021年   85篇
  2020年   61篇
  2019年   93篇
  2018年   104篇
  2017年   127篇
  2016年   169篇
  2015年   229篇
  2014年   309篇
  2013年   651篇
  2012年   534篇
  2011年   525篇
  2010年   365篇
  2009年   341篇
  2008年   526篇
  2007年   532篇
  2006年   495篇
  2005年   489篇
  2004年   506篇
  2003年   532篇
  2002年   479篇
  2001年   453篇
  2000年   465篇
  1999年   372篇
  1998年   144篇
  1997年   145篇
  1996年   111篇
  1995年   125篇
  1994年   120篇
  1993年   104篇
  1992年   267篇
  1991年   238篇
  1990年   235篇
  1989年   237篇
  1988年   228篇
  1987年   188篇
  1986年   197篇
  1985年   166篇
  1984年   119篇
  1983年   138篇
  1982年   113篇
  1981年   75篇
  1980年   76篇
  1979年   120篇
  1978年   72篇
  1977年   74篇
  1975年   58篇
  1973年   60篇
  1972年   53篇
  1970年   51篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
SWIRM is an evolutionarily conserved domain involved in several chromatin-modifying complexes. Recently, the LSD1 protein, which bears a SWIRM domain, was found to be a demethylase for Lys4-methylated histone H3. Here, we report a solution structure of the SWIRM domain of human LSD1. It forms a compact fold composed of 6 alpha helices, in which a 20 amino acid long helix (alpha4) is surrounded by 5 other short helices. The SWIRM domain structure could be divided into the N-terminal part (alpha1-alpha3) and the C-terminal part (alpha4-alpha6), which are connected to each other by a salt bridge. While the N-terminal part forms a SWIRM-specific structure, the C-terminal part adopts a helix-turn-helix (HTH)-related fold. We discuss a model in which the SWIRM domain acts as an anchor site for a histone tail.  相似文献   
992.
The structure of the C-terminal antifreeze-like (AFL) domain of human sialic acid synthase was determined by NMR spectroscopy. The structure comprises one alpha- and two single-turn 3(10)-helices and two beta-strands, and is similar to those of the type III antifreeze proteins. Evolutionary trace analyses of the type III antifreeze protein family suggested that the class-specific residues in the human and bacterial AFL domains are important for their substrate binding, while the class-specific residues of the fish antifreeze proteins are gathered on the ice-binding surface.  相似文献   
993.
Vps13 family proteins are proposed to function in bulk lipid transfer between membranes, but little is known about their regulation. During sporulation of Saccharomyces cerevisiae, Vps13 localizes to the prospore membrane (PSM) via the Spo71–Spo73 adaptor complex. We previously reported that loss of any of these proteins causes PSM extension and subsequent sporulation defects, yet their precise function remains unclear. Here, we performed a genetic screen and identified genes coding for a fragment of phosphatidylinositol (PI) 4-kinase catalytic subunit and PI 4-kinase noncatalytic subunit as multicopy suppressors of spo73Δ. Further genetic and cytological analyses revealed that lowering PI4P levels in the PSM rescues the spo73Δ defects. Furthermore, overexpression of VPS13 and lowering PI4P levels synergistically rescued the defect of a spo71Δ spo73Δ double mutant, suggesting that PI4P might regulate Vps13 function. In addition, we show that an N-terminal fragment of Vps13 has affinity for the endoplasmic reticulum (ER), and ER-plasma membrane (PM) tethers localize along the PSM in a manner dependent on Vps13 and the adaptor complex. These observations suggest that Vps13 and the adaptor complex recruit ER-PM tethers to ER-PSM contact sites. Our analysis revealed that involvement of a phosphoinositide, PI4P, in regulation of Vps13, and also suggest that distinct contact site proteins function cooperatively to promote de novo membrane formation.  相似文献   
994.
The separation and identification of fluorescein-thiocarbarnyl (FTC-) amino acid II were accomplished by one- and two-dimensional thin-layer chromatography. The authentic samples for identification of amino acids were synthesized with fluorescein-isothiocyanate II (FITC II) and 21 amino acids. These FTC-amino acids were studied spectrometrically.

For quantitative estimation of FTC-amino acids, the fluoroscopy was used. It was found that the fluorescence intensity was proportional to the concentration of FTC-amino acids in 2 pmole/ml to 20 nmole/ml range. Recovery of FTC-derivatives on silica gel plate was about 80%.  相似文献   
995.
Two genes of Pseudomonas putida (IFO 12996) which code for enzymes participating in amino acid metabolism, were cloned in Escherichia coli C600 using pBR322 as a vector. pST7549 is a 7.9 kb hybrid plasmid DNA which is composed of four SalI fragments (0.3, 1.4, 1.9 and 4.3 kb), and codes for β-isopropylmalate dehydrogenase (EC 1.1.1.85) in l-leucine biosynthesis. The enzyme activity in the crude extract from E. coli C600 bearing pST7549 was 80 ~ 90% lower than that of E. coli K12 or P. putida. When the foreign SalI fragments derived from P. putida were subcloned, a 1.9 kb SalI fragment was found to encode β-isopropylmalate dehydrogenase and it did not contain the promoter of P. putida DNA. Plasmid pST6961 has a 1.8 kb insert derived from the P. putida DNA in the SalI site of pBR322. E. coli cells carrying this recombinant plasmid show no leucine racemase activity and no d-leucine transaminase activity, but five-times higher d-leucine oxidation activity than the host strain, E. coli. Enzymological studies have suggested that plasmid pST6961 codes for d-amino acid dehydrogenase, a key enzyme in d-amino acid metabolism.  相似文献   
996.
The deubiquitinylating enzymes (DUBs), that release free ubiquitin (Ub) from its precursors or ubiquitinylated proteins, are known to comprise of a large protein family in eukaryotes, but those in mammalian tissues remain largely unknown. Here we report the existence of unexpectedly large species of DUBs in both soluble and membrane-bound fractions of bovine brain, based on their ability to cleave (125)I-labeled Ub-fused alphaNH-MHISPPEPESEEEEEHYC (designated as Ub-PESTc). Two cytosolic enzymes, tentatively called sDUB-1 and sDUB-2, with molecular masses of about 30 kDa were purified to near homogeneity by Ub-Sepharose affinity chromatography. sDUB-1 and sDUB-2 corresponded to UCH-L3 and UCH-L1/PGP 9.5, respectively. Intriguingly, the particulate fraction of the brain homogenate was found to also contain strong activities against (125)I-Ub-PESTc, which can be solubilized by treatment with 5% n-heptyl-beta-D-thioglucoside and 1% Nonidet P-40, but not by washing with 1 M NaCl. From the solubilized material, two new 30-kDa, membranous DUBs (called mDUB-1 and mDUB-2) were purified to apparent homogeneity by Ub-Sepharose chromatography. Two other Ub-aldehyde sensitive DUBs, designated as mDUB-3 and mDUB-4, were also partially purified by conventional chromatographic operations. These mDUBs differed from each other in substrate specificity and exhibited different characteristics from the sDUBs, revealing that they are a new type of membrane-bound DUB. These results indicate the presence of divergent DUBs in mammalian brain, which may contribute to regulation of numerous pivotal cellular functions mediated by the covalent modification of Ub.  相似文献   
997.
In this study, we have demonstrated that normal cultured keratinocytes (KCs) could generate significant endogenous substance P (SP) in a dose- and time-dependent response to exogenous SP by sensitive ELISA assay and express preprotachinin-a mRNA by RT-PCR and Southern blotting. We performed immunohistochemical analysis to confirm the presence of SP in cultured keratinocytes. In contrast, adrenaline, acetylcholine, histamine and CGRP induced only low amount of SP from cultured normal human KCs. This is the first report that SP can be induced by skin epithelial cells in response to exogenous SP and KC derived SP might play an important role in induction and acceleration of certain cutaneous diseases.  相似文献   
998.
Since the isolation and characterization of dwarf1-1 (dwf1-1) from a T-DNA insertion mutant population, phenotypically similar mutants, including deetiolated2 (det2), constitutive photomorphogenesis and dwarfism (cpd), brassinosteroid insensitive1 (bri1), and dwf4, have been reported to be defective in either the biosynthesis or the perception of brassinosteroids. We present further characterization of dwf1-1 and additional dwf1 alleles. Feeding tests with brassinosteroid-biosynthetic intermediates revealed that dwf1 can be rescued by 22alpha-hydroxycampesterol and downstream intermediates in the brassinosteroid pathway. Analysis of the endogenous levels of brassinosteroid intermediates showed that 24-methylenecholesterol in dwf1 accumulates to 12 times the level of the wild type, whereas the level of campesterol is greatly diminished, indicating that the defective step is in C-24 reduction. Furthermore, the deduced amino acid sequence of DWF1 shows significant similarity to a flavin adenine dinucleotide-binding domain conserved in various oxidoreductases, suggesting an enzymatic role for DWF1. In support of this, 7 of 10 dwf1 mutations directly affected the flavin adenine dinucleotide-binding domain. Our molecular characterization of dwf1 alleles, together with our biochemical data, suggest that the biosynthetic defect in dwf1 results in reduced synthesis of bioactive brassinosteroids, causing dwarfism.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号