首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2475篇
  免费   205篇
  国内免费   1篇
  2681篇
  2022年   21篇
  2021年   45篇
  2020年   32篇
  2019年   37篇
  2018年   54篇
  2017年   40篇
  2016年   65篇
  2015年   100篇
  2014年   115篇
  2013年   131篇
  2012年   163篇
  2011年   143篇
  2010年   77篇
  2009年   82篇
  2008年   100篇
  2007年   115篇
  2006年   102篇
  2005年   95篇
  2004年   95篇
  2003年   67篇
  2002年   76篇
  2001年   75篇
  2000年   67篇
  1999年   51篇
  1998年   22篇
  1997年   19篇
  1995年   16篇
  1994年   16篇
  1993年   23篇
  1992年   38篇
  1991年   43篇
  1990年   39篇
  1989年   39篇
  1988年   34篇
  1987年   29篇
  1986年   30篇
  1985年   27篇
  1984年   34篇
  1983年   22篇
  1982年   16篇
  1981年   19篇
  1979年   21篇
  1978年   19篇
  1977年   22篇
  1976年   13篇
  1975年   18篇
  1974年   15篇
  1972年   14篇
  1970年   17篇
  1966年   17篇
排序方式: 共有2681条查询结果,搜索用时 0 毫秒
51.
R E Carraway  S P Mitra  K Muraki 《Peptides》1991,12(1):107-112
Lysates of isolated rat polymorphonuclear leukocytes and macrophages were found to generate xenopsin-related peptides when incubated with a liver extract used as a source of precursor. The lysosomal enzyme, cathepsin D, was also shown to display this property and to share with the lysate a similar pH dependence (optimum, approximately pH 3.5) and sensitivity to the acid protease inhibitor, pepstatin A (ID50: lysate, 10 nM; cathepsin D, 30 nM). When subjected to HPLC on mu-Bondapak C-18, the xenopsin-related peptides generated by the lysate eluted near to those formed by cathepsin D and when tested in a radioreceptor assay for neurotensin, they displayed similar cross-reactivities (peak 2, approximately 50%; peak 1, approximately 100%). These results indicate that cathepsin D from lysed granulocytes can process precursor protein(s) to form radioreceptor-active xenopsin-related peptides.  相似文献   
52.
53.
Stem cells from human exfoliated deciduous teeth (SHED) are highly proliferative, clonogenic and multipotent stem cells with a neural crest cell origin. Additionally, they can be collected with minimal invasiveness in comparison with other sources of mesenchymal stem cells (MSCs). Therefore, SHED could be a desirable option for potential therapeutic applications. In this study, SHEDs were established from enzyme-disaggregated deciduous dental pulp obtained from 6 to 9 year-old children. The cells had typical fibroblastoid morphology and expressed antigens characteristic of MSCs, STRO1, CD146, CD45, CD90, CD106 and CD166, but not the hematopoietic and endothelial markers, CD34 and CD31, as assessed by FACS analysis. Differentiation assessment revealed a strong osteogenic and adipogenic potential of SHEDs. In order to further evaluate the in vitro differentiation potential of SHED into neural cells, a simple short time growth factor-mediated induction was used. Immunofluorescence staining and flow cytometric analysis revealed that SHED rapidly expressed nestin and b-III tubulin, and later expressed intermediate neural markers. In addition, the intensity and percentages of nestin and b-III tubulin and mature neural markers (PSA-NCAM, NeuN, Tau, TH, or GFAP) increased significantly following treatment. Moreover, RT-PCR and Western blot analyses showed that the neural markers were strongly up-regulated after induction. In conclusion, these results provide evidence that SHED can differentiate into neural cells by the expression of a comprehensive set of genes and proteins that define neural-like cells in vitro. SHED cells might be considered as new candidates for the autologous transplantation of a wide variety of neurological diseases and neurotraumatic injuries.  相似文献   
54.
The synthesis, crystal structures and magnetic properties of two different copper(II) complexes of formula [Cu(L1)(dca)]n · nClO4 (1) and [Cu(L2)]2(dca)(ClO4) (2) [L1 = N,N-dimethylethylene-N′-(pyridine-2-carbaldiiminato), HL2 = N,N-dimethylethylene-N′-salicylaldiiminato, dca = dicyanamide anion] are described. Spectroscopic and electrochemical properties have also been discussed. A one-dimensional chain structure with single, symmetrical, μ1,5-dca bridges is found in compound 1. The copper atom in 1 has a square pyramidal geometry. A tridentate Schiff base ligand, having NNN donor sites, and one nitrogen atom from dca occupy the basal plane. N(18) of a neighbouring unit occupies the apical site. The Schiff base used in compound 2 is a tridentate anion with NNO donor sites, which changes the structure in a dinuclear unit of copper atoms bridged by single end-to-end dicyanamide ion. The environment around copper in 2 is square planar. Magnetic susceptibility measurements for 1 and 2 reveal the occurrence of weak antiferromagnetic interaction through the dca ligand.  相似文献   
55.
Rawls AS  Schultz SA  Mitra RD  Wolff T 《Genetics》2007,177(1):313-328
The tissue polarity pathway is required for the establishment of epithelial polarity in a variety of vertebrate and invertebrate organs. Core tissue polarity proteins act in a dynamically regulated complex to direct the polarization of the Drosophila eye. We report the identification and characterization of bedraggled (bdg), a novel gene that regulates one output of the tissue polarity pathway--the establishment of the R3/R4 photoreceptor fates. bdg encodes a novel, putative transporter protein and interacts genetically with all of the core polarity genes to influence the specification of the R3 and R4 cell fates. Finally, bdg is required for both viability and the initial stages of imaginal disc development.  相似文献   
56.
Summary Production values (PVs), defined as the weight of the end product/weight of the substrate required for carbon skeletons and energy production, were calculated for plant fatty acids. The PVs varied from 0.361 to 0.300 with linolenic acid having the lowest value. In general, the PVs of unsaturated fatty acids were lower than those of saturated fatty acids of similar chain lengths. Using this basic information, PVs of (A) oils from different oilseed crops, based on their standard fatty acid composition and (B) seed biomass with specified oil content and fatty acid composition were calculated. 1/PV gives the glucose required for the biosynthesis of 1 g end product and thus an estimate of the photosynthate requirement for the desired breeding goal can be estimated. Such calculations show that increasing oil percentage in seeds has a maximum energy cost when the increase in oil is associated with a decrease in the amount of carbohydrates where there is no change in protein concentration. Reduction of erucic acid content in the rapeseed oil did not alter its PV. It is inferred that there are no serious bioenergetic constraints in altering the fatty acid composition.  相似文献   
57.
58.
Precipitation of concanavalin A by a high mannose type glycopeptide   总被引:1,自引:0,他引:1  
The interactions of a high mannose type glycopeptide with Concanavalin A has been investigated by quantitative precipitation analysis. The equivalence points of the precipitin curves indicate that the glycopeptide is bivalent for lectin binding. These results and others demonstrate that there are two lectin binding sites per molecule of the glycopeptide: one site on the alpha (1-6) arm of the core beta-mannose residue involving a trimannosyl moiety, and another site on the alpha (1-3) arm of the core beta-mannose residue involving an alpha (1-2) mannobiosyl group. The two sites are unequal in their affinities, and bind by different mechanisms. These results are related to the possible structure-function properties of high mannose type of glycopeptides on the surface of cells.  相似文献   
59.
60.
ABSTRACT: BACKGROUND: Nonhost resistance (NHR) provides immunity to all members of a plant species against all isolates of a microorganism that is pathogenic to other plant species. Three Arabidopsis thaliana PEN (penetration deficient) genes, PEN1, 2 and 3 have been shown to provide NHR against the barley pathogen Blumeria graminis f. sp. hordei at the prehaustorial level. Arabidopsis pen1-1 mutant lacking the PEN1 gene is penetrated by the hemibiotrophic oomycete pathogen Phytophthora sojae, the causal organism of the root and stem rot disease in soybean. We investigated if there is any novel nonhost resistance mechanism in Arabidopsis against the soybean pathogen, P. sojae. RESULTS: The P. sojae susceptible (pss) 1 mutant was identified by screening a mutant population created in the Arabidopsis pen1-1 mutant that lacks penetration resistance against the non adapted barley biotrophic fungal pathogen, Blumeria graminis f. sp. hordei. Segregation data suggested that PEN1 is not epistatic to PSS1. Responses of pss1 and pen1-1 to P. sojae invasion were distinct and suggest that PSS1 may act at both pre- and post-haustorial levels, while PEN1 acts at the pre-haustorial level against this soybean pathogen. Therefore, PSS1 encodes a new form of nonhost resistance. The pss1 mutant is also infected by the necrotrophic fungal pathogen, Fusarium virguliforme, which causes sudden death syndrome in soybean. Thus, a common NHR mechanism is operative in Arabidopsis against both hemibiotrophic oomycetes and necrotrophic fungal pathogens that are pathogenic to soybean. However, PSS1 does not play any role in immunity against the bacterial pathogen, Pseudomonas syringae pv. glycinea, that causes bacterial blight in soybean. We mapped PSS1 to a region very close to the southern telomere of chromosome 3 that carries no known disease resistance genes. CONCLUSIONS: The study revealed that Arabidopsis PSS1 is a novel nonhost resistance gene that confers a new form of nonhost resistance against both a hemibiotrophic oomycete pathogen, P. sojae and a necrotrophic fungal pathogen, F. virguliforme that cause diseases in soybean. However, this gene does not play any role in the immunity of Arabidopsis to the bacterial pathogen, P. syringae pv. glycinea, which causes bacterial blight in soybean. Identification and further characterization of the PSS1 gene would provide further insights into a new form of nonhost resistance in Arabidopsis, which could be utilized in improving resistance of soybean to two serious pathogens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号