首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1450篇
  免费   132篇
  国内免费   1篇
  2023年   12篇
  2022年   13篇
  2021年   31篇
  2020年   26篇
  2019年   26篇
  2018年   38篇
  2017年   26篇
  2016年   46篇
  2015年   64篇
  2014年   66篇
  2013年   75篇
  2012年   108篇
  2011年   102篇
  2010年   51篇
  2009年   52篇
  2008年   62篇
  2007年   69篇
  2006年   68篇
  2005年   53篇
  2004年   60篇
  2003年   35篇
  2002年   38篇
  2001年   34篇
  2000年   33篇
  1999年   20篇
  1998年   12篇
  1997年   8篇
  1995年   7篇
  1994年   8篇
  1993年   12篇
  1992年   16篇
  1991年   28篇
  1990年   21篇
  1989年   19篇
  1988年   18篇
  1987年   12篇
  1986年   15篇
  1985年   8篇
  1984年   22篇
  1983年   8篇
  1982年   12篇
  1981年   9篇
  1979年   12篇
  1978年   11篇
  1977年   14篇
  1975年   11篇
  1972年   9篇
  1970年   13篇
  1966年   9篇
  1965年   7篇
排序方式: 共有1583条查询结果,搜索用时 31 毫秒
991.
Antioxidants are important defenders of the human body against nocive free radicals, which are the causative agents of most life-threatening diseases. The immense biomedicinal utility of antioxidants necessitates the development and design of new synthetic antioxidant molecules. The present report deals with the modeling of a series of chromone derivatives, which was done to provide detailed insight into the main structural fragments that impart antioxidant activity to these molecules. Four different quantitative structure–property relationship (QSAR) techniques, namely 3D pharmacophore mapping, comparative molecular similarity indices analysis (CoMSIA 3D-QSAR), hologram QSAR (HQSAR), and group-based QSAR (G-QSAR) techniques, were employed to obtain statistically significant models with encouraging external predictive potentials. Moreover, the visual contribution maps obtained for the different models signify the importance of different structural features in specific regions of the chromone nucleus. Additionally, the G-QSAR models determine the composite influence of pairs of substituent fragments on the overall antioxidant activity profiles of the molecules. Multiple models with different strategies for assessing structure–activity relationships were applied to reach a unified conclusion regarding the antioxidant mechanism and to provide consensus predictions, which are more reliable than values derived from a single model. The structural information obtained from the various QSAR models developed in the present work can thus be effectively utilized to design and predict the activities of new molecules belonging to the class of chromone derivatives.  相似文献   
992.
The SLIT2-ROBO1/2 pathways control diverse biological processes, including growth regulation. To understand the role of SLIT2 and ROBO1/2 in cervical carcinogenesis, firstly their RNA expression profiles were screened in 21 primary uterine cervical carcinoma (CACX) samples and two CACX cell lines. Highly reduced expressions of these genes were evident. Concomitant alterations [deletion/methylation] of the genes were then analyzed in 23 cervical intraepithelial neoplasia (CIN) and 110 CACX samples. In CIN, SLIT2 was deleted in 22% samples compared to 9% for ROBO1 and none for ROBO2, whereas comparable methylation was observed for both SLIT2 (30%) and ROBO1 (22%) followed by ROBO2 (9%). In CACX, alteration of the genes were in the following order: Deletion:ROBO1 (48%) > SLIT2 (35%) > ROBO2 (33%), Methylation:SLIT2 (34%) > ROBO1 (29%) > ROBO2 (26%). Overall alterations of SLIT2 and/or ROBO1 (44%) and SLIT2 and/or ROBO2 (39%) were high in CIN followed by significant increase in stage I/II tumors, suggesting deregulation of these interactions in premalignant lesions and early invasive tumors. Immunohistochemical analysis of SLIT2 and ROBO1/2 in CACX also showed reduced expression concordant with molecular alterations. Alteration of all these genes predicted poor patient outcome. Multiparous (≥ 5) women with altered SLIT2 and ROBO1 along with advanced tumor stage (III/IV) and early sexual debut (<19 years) had worst prognosis. Our data suggests the importance of abrogation of SLIT2-ROBO1 and SLIT2-ROBO2 interactions in the initiation and progression of CACX and also for early diagnosis and prognosis of the disease.  相似文献   
993.
Switchgrass (Panicum virgatum L.) is a C4 perennial grass and has been identified as a potential bioenergy crop for cellulosic ethanol because of its rapid growth rate, nutrient use efficiency and widespread distribution throughout North America. The improvement of bioenergy feedstocks is needed to make cellulosic ethanol economically feasible, and genetic engineering of switchgrass is a promising approach towards this goal. A crucial component of creating transgenic switchgrass is having the capability of transforming the explants with DNA sequences of interest using vector constructs. However, there are limited options with the monocot plant vectors currently available. With this in mind, a versatile set of Gateway-compatible destination vectors (termed pANIC) was constructed to be used in monocot plants for transgenic crop improvement. The pANIC vectors can be used for transgene overexpression or RNAi-mediated gene suppression. The pANIC vector set includes vectors that can be utilized for particle bombardment or Agrobacterium-mediated transformation. All the vectors contain (i) a Gateway cassette for overexpression or silencing of the target sequence, (ii) a plant selection cassette and (iii) a visual reporter cassette. The pANIC vector set was functionally validated in switchgrass and rice and allows for high-throughput screening of sequences of interest in other monocot species as well.  相似文献   
994.
ABSTRACT: BACKGROUND: While there is now a significant body of research correlating apple (Malus x domestica) fruit softening with the cell wall hydrolase ENDO-POLYGALACTURONASE1 (PG1), there is currently no direct evidence of its function. This study examined the effect of down regulation of PG1 expression in 'Royal Gala' apples, a cultivar that typically has high levels of PG1, and softens during fruit ripening. RESULTS: PG1-suppressed 'Royal Gala' apples harvested from multiple seasons were firmer than controls after ripening, and intercellular adhesion was higher. Cell wall analyses indicated changes in yield and composition of pectin, and a higher molecular weight distribution of CDTA-soluble pectin. Structural analyses revealed more ruptured cells and free juice in pulled apart sections, suggesting improved integrity of intercellular connections and consequent cell rupture due to failure of the primary cell walls under stress. PG1-suppression also had reduced expansion of cells in the hypodermis of ripe apples, resulting in more densely packed cells in this layer. This change in morphology appears to be linked with reduced transpirational water loss in the fruit. CONCLUSIONS: These findings confirm PG1's role in apple fruit softening and suggests that this is achieved in part by reducing cellular adhesion. This is consistent with previous studies in shown in strawberry but not in tomato. In apple PG1 also appears influence other fruit texture characters such as juiciness and water loss.  相似文献   
995.
Garma L  Mukherjee S  Mitra P  Zhang Y 《PloS one》2012,7(6):e38913
"Protein quaternary structure universe" refers to the ensemble of all protein-protein complexes across all organisms in nature. The number of quaternary folds thus corresponds to the number of ways proteins physically interact with other proteins. This study focuses on answering two basic questions: Whether the number of protein-protein interactions is limited and, if yes, how many different quaternary folds exist in nature. By all-to-all sequence and structure comparisons, we grouped the protein complexes in the protein data bank (PDB) into 3,629 families and 1,761 folds. A statistical model was introduced to obtain the quantitative relation between the numbers of quaternary families and quaternary folds in nature. The total number of possible protein-protein interactions was estimated around 4,000, which indicates that the current protein repository contains only 42% of quaternary folds in nature and a full coverage needs approximately a quarter century of experimental effort. The results have important implications to the protein complex structural modeling and the structure genomics of protein-protein interactions.  相似文献   
996.
997.
Rhizoctonia solani is a ubiquitous basidiomycetous soilborne fungal pathogen causing damping-off of seedlings, aerial blights and postharvest diseases. To gain insight into the molecular mechanisms of pathogenesis a global approach based on analysis of expressed sequence tags (ESTs) was undertaken. To get broad gene-expression coverage, two normalized EST libraries were developed from mycelia grown under high nitrogen-induced virulent and low nitrogen/methylglucose-induced hypovirulent conditions. A pilot-scale assessment of gene diversity was made from the sequence analyses of the two libraries. A total of 2280 cDNA clones was sequenced that corresponded to 220 unique sequence sets or clusters (contigs) and 805 singlets, making up a total of 1025 unique genes identified from the two virulence-differentiated cDNA libraries. From the total sequences, 295 genes (38.7%) exhibited strong similarities with genes in public databases and were categorized into 11 functional groups. Approximately 61.3% of the R. solani ESTs have no apparent homologs in publicly available fungal genome databases and are considered unique genes. We have identified several cDNAs with potential roles in fungal pathogenicity, virulence, signal transduction, vegetative incompatibility and mating, drug resistance, lignin degradation, bioremediation and morphological differentiation. A codon-usage table has been formulated based on 14694 R. solani EST codons. Further analysis of ESTs might provide insights into virulence mechanisms of R. solani AG 4 as well as roles of these genes in development, saprophytic colonization and ecological adaptation of this important fungal plant pathogen.  相似文献   
998.
An experimental system was developed to generate infectious human respiratory syncytial virus (HRSV) lacking matrix (M) protein expression (M-null virus) from cDNA. The role of the M protein in virus assembly was then examined by infecting HEp-2 and Vero cells with the M-null virus and assessing the impact on infectious virus production and viral protein trafficking. In the absence of M, the production of infectious progeny was strongly impaired. Immunofluorescence (IF) microscopy analysis using antibodies against the nucleoprotein (N), attachment protein (G), and fusion protein (F) failed to detect the characteristic virus-induced cell surface filaments, which are believed to represent infectious virions. In addition, a large proportion of the N protein was detected in viral replication factories termed inclusion bodies (IBs). High-resolution analysis of the surface of M-null virus-infected cells by field emission scanning electron microscopy (SEM) revealed the presence of large areas with densely packed, uniformly short filaments. Although unusually short, these filaments were otherwise similar to those induced by an M-containing control virus, including the presence of the viral G and F proteins. The abundance of the short, stunted filaments in the absence of M indicates that M is not required for the initial stages of filament formation but plays an important role in the maturation or elongation of these structures. In addition, the absence of mature viral filaments and the simultaneous increase in the level of the N protein within IBs suggest that the M protein is involved in the transport of viral ribonucleoprotein (RNP) complexes from cytoplasmic IBs to sites of budding.  相似文献   
999.
Information is lacking on the effects toxic environmental metals may have on the 26S proteasome. The proteasome is a primary vehicle for selective degradation of damaged proteins in a cell and due to its role in cell proliferation, inhibition of the proteasome has become a target for cancer therapy. Metals are essential to the proteasome's normal function and have been used within proteasome-inhibiting complexes for cancer therapy. This study evaluated the association of erythrocyte metal levels and proteasome chymotrypsin-like (CT-like) activity in age- and race-matched prostate cancer cases (n?=?61) and controls (n?=?61). Erythrocyte metals were measured by inductively coupled plasma mass spectrometry (ICP-MS). CT-like activity was measured by proteasome activity assay using a fluorogenic peptide substrate. Among cases, significant correlations between individual toxic metals were observed (r(arsenic-cadmium)?=?0.49, p?相似文献   
1000.
The Chlamydomonas reinhardtii DNA-insertional transformant truncated light-harvesting antenna 1 (tla1) mutant, helped identify the novel TLA1 gene (GenBank Accession # AF534570-71) as an important genetic determinant in the chlorophyll antenna size of photosynthesis. Down-regulation in the amount of the TLA1 23 kDa protein in the cell resulted in smaller chlorophyll antenna size for both photosystems (in Tetali et al. Planta 225:813–829, 2007). Specific polyclonal antibodies, raised against the recombinant TLA1 protein, showed a cross-reaction with the predicted 23 kDa TLA1 protein in C. reinhardtii protein extracts, but also showed a strong cross-reaction with a protein band migrating to 28.5 kDa. Questions of polymorphism, or posttranslational modification of the TLA1 protein were raised as a result of the unexpected 28.5 kDa cross-reaction. Work in this paper aimed to elucidate the nature of the unexpected 28.5 kDa cross-reaction, as this was deemed to be important in terms of the functional role of the TLA1 protein in the regulation of the chlorophyll antenna size of photosynthesis. Immuno-precipitation of the 28.5 kDa protein, followed by LC–mass spectrometry, showed amino acid sequences ascribed to the psbD/D2 reaction center protein of PSII. The common antigenic determinant between TLA1 and D2 was shown to be a stretch of nine conserved amino acids V-F—L(V)LP-GNAL in the C-terminus of the two proteins, constituting a high antigenicity “GNAL” domain. Antibodies raised against the TLA1 protein containing this domain recognized both the TLA1 and the D2 protein. Conversely, antibodies raised against the TLA1 protein minus the GNAL domain specifically recognized the 23 kDa TLA1 protein and failed to recognize the 28.5 kDa D2 protein. D2 antibodies raised against an oligopeptide containing this domain also cross-reacted with the TLA1 protein. It is concluded that the 28.5 kDa cross-reaction of C. reinhardtii protein extracts with antiTLA1 antibodies is due to antibody affinity for the GNAL domain of the D2 protein and has no bearing on the identity or function of the TLA1 protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号