首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   588篇
  免费   71篇
  国内免费   1篇
  2023年   4篇
  2022年   7篇
  2021年   10篇
  2020年   6篇
  2019年   7篇
  2017年   10篇
  2016年   14篇
  2015年   21篇
  2014年   28篇
  2013年   25篇
  2012年   36篇
  2011年   33篇
  2010年   25篇
  2009年   16篇
  2008年   34篇
  2007年   31篇
  2006年   41篇
  2005年   27篇
  2004年   18篇
  2003年   20篇
  2002年   11篇
  2001年   19篇
  2000年   17篇
  1999年   9篇
  1998年   4篇
  1997年   5篇
  1996年   4篇
  1994年   5篇
  1993年   3篇
  1992年   6篇
  1991年   8篇
  1990年   12篇
  1989年   15篇
  1988年   15篇
  1987年   8篇
  1986年   12篇
  1985年   12篇
  1984年   8篇
  1983年   5篇
  1982年   12篇
  1981年   7篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1975年   3篇
  1974年   10篇
  1973年   5篇
  1972年   3篇
  1971年   3篇
  1970年   3篇
排序方式: 共有660条查询结果,搜索用时 140 毫秒
491.
P2X receptors play an important role in communication between cells in the nervous system. Therefore, understanding the mechanisms of inhibition of these receptors is important for the development of new tools for drug discovery. Our objective has been to determine the pharmacological activity of the antagonist suramin, the most important antagonist of purinergic receptor function, as well as to demonstrate its noncompetitive inhibition and confirm a competitive mechanism between ATP and TNP-ATP in 1321N1 glial cells stably transfected with the recombinant rat P2X(2) receptor. A radioligand binding assay was employed to determine whether suramin, TNP-ATP, and ATP compete for the same binding site on the receptor. TNP-ATP displaced [alpha-32P]ATP, whereas suramin did not interfere with [alpha-32P]ATP-receptor binding. To determine the inhibition mechanism relevant for channel opening, currents obtained in fast kinetic whole-cell recording experiments, following stimulation of cells by ATP in the presence of suramin, were compared to those obtained by ATP in the presence of TNP-ATP. Supported by a mathematical model for receptor kinetics [Breitinger, H. G., Geetha, N., and Hess, G. P. (2001) Biochemistry 40, 8419-8429], the inhibition factors were plotted as functions of inhibitor or agonist concentrations. Analysis of the data indicated a competitive inhibition mechanism for TNP-ATP and a noncompetitive inhibition for suramin. Taken together, both data support a noncompetitive inhibition mechanism of the rat recombinant P2X(2) receptor by suramin, confirm the competitive inhibition by TNP-ATP, and allow the prediction of a model for P2X(2) receptor inhibition.  相似文献   
492.
Generation of phosphocholine by choline kinase is important for phosphatidylcholine biosynthesis via Kennedy pathway and phosphatidylcholine biosynthesis is essential for intraerythrocytic growth of malaria parasite. A putative gene (Gene ID PF14_0020) in chromosome 14, having highest sequence homology with choline kinase, has been identified by BLAST searches from P. falciparum genome sequence database. This gene has been PCR amplified, cloned, over-expressed and characterized. Choline kinase activity of the recombinant protein (PfCK) was validated as it catalyzed the formation of phosphocholine from choline in presence of ATP. The K(m) values for choline and ATP are found to be 145+/-20 microM and 2.5+/-0.3 mM, respectively. PfCK can phosphorylate choline efficiently but not ethanolamine. Southern blotting indicates that PfCK is a single copy gene and it is a cytosolic protein as evidenced by Western immunoblotting and confocal microscopy. A model structure of PfCK was constructed based on the crystal structure of choline kinase of C. elegans to search the structural homology. Consistent with the homology modeling predictions, CD analysis indicates that the alpha and beta content of PfCK are 33% and 14%, respectively. Since choline kinase plays a vital role for growth and multiplication of P. falciparum during intraerythrocytic stages, we can suggest that this well characterized PfCK may be exploited in the screening of new choline kinase inhibitors to evaluate their antimalarial activity.  相似文献   
493.
494.
One of the important pathways of resistance to anthracyclines is governed by elevated levels of glutathione (GSH) in cancer cells. Resistant cells having elevated levels of GSH show higher expression of multidrug-resistant protein (MRP); the activity of glutathione S-transferases (GSTs) group of enzymes have also been found to be higher in some drug-resistant cells. The general mechanism in this type of resistance seems to be the formation of conjugates enzymatically by GSTs, and subsequent efflux by active transport through MRP (MRP1-MRP9). MRPs act as drug efflux pump and can also co-transport drugs like doxorubicin (Dox) with GSH. Depletion of GSH in resistant neoplastic cells may possibly sensitize such cells, and thus overcome multidrug resistance (MDR). A number of resistance modifying agents (RMA) like DL-buthionine (S, R) sulfoxamine (BSO) and ethacrynic acid (EA) moderately modulate resistance by acting as a GSH-depleting agent. As most of the GSH-depleting agents have dose-related toxicity, development of non-toxic GSH-depleting agent has immense importance in overcoming MDR. The present study describes the resistance reversal potentiality of novel copper complex, viz., copper N-(2-hydroxy acetophenone) glycinate (CuNG) developed by us in Dox-resistant Ehrlich ascites carcinoma (EAC/Dox) cells. CuNG depletes GSH in resistant (EAC/Dox) cells possibly by forming conjugate with it. Depletion of GSH results in higher Dox accumulation that may lead to enhanced rate of apoptosis in EAC/Dox cells. In vivo studies with male Swiss albino mice bearing ascitic growth of EAC/Dox showed tremendous increase in life span (treated/control, T/C = 453%) for the treated group with apparent regression of tumor. Resistance to Dox in EAC/Dox cells is associated with over expression of GST-P1, GST-M1 (enzymes involved in phase II detoxification) and MRP1 (a transmembrane ATPase efflux pump for monoglutathionyl conjugates of xenobiotics). CuNG causes down regulation of all these three proteins in EAC/Dox cells. The effect of CuNG as RMA is better than BSO in many aspects.  相似文献   
495.
The molecular basis of salt tolerance of L-myo-inositol 1-P synthase (MIPS; EC 5.5.1.4) from Porteresia coarctata (Roxb.) Tateoka (PcINO1, AF412340) earlier reported from this laboratory, has been analyzed by in vitro mutant and hybrid generation and subsequent biochemical and biophysical studies of the recombinant proteins. A 37-amino acid stretch between Trp-174 and Ser-210 has been confirmed as the salt-tolerance determinant domain in PcINO1 both by loss or gain of salt tolerance by either deletion or by addition to salt-sensitive MIPS(s) of Oryza (OsINO1) and Brassica juncea (BjINO1). This was further verified by growth analysis under salt environment of Schizosaccharomyces pombe transformed with the various gene constructs and studies on the differential behavior of mutant and wild proteins by Trp fluorescence, aggregation, and circular dichroism spectra in the presence of salt. 4,4'-Dianilino-1,1'-binaphthyl-5,5-disulfonic acid binding experiments revealed a lower hydrophobic surface on PcINO1 than OsINO1, contributed by this 37-amino acid stretch explaining the differential behavior of OsINO1 and PcINO1 both with respect to their enzymatic functions and thermodynamic stability in high salt environment. Detailed amino acid sequence comparison and modeling studies revealed the interposition of polar and charged residues and a well-connected hydrogen-bonding network formed by Ser and Thr in this stretch of PcINO1. On the contrary, hydrophobic residues clustered in two continuous stretches in the corresponding region of OsINO1 form a strong hydrophobic patch on the surface. It is conceivable that salt-tolerant MIPS proteins may be designed out of the salt-sensitive plant MIPS proteins by replacement of the corresponding amino acid stretch by the designated 37-amino acid stretch of PcINO1.  相似文献   
496.
Tuberculosis is characterized by severe immunosuppression of the host macrophages, resulting in the loss of the host protective immune responses. During Mycobacterium tuberculosis infection, the pathogen modulates C-C Chemokine Receptor 5 (CCR5) to enhance IL-10 production, indicating the possible involvement of CCR5 in regulation of the host immune response. Here, we found that Mycobacterium infection significantly increased CCR5 expression in macrophages there by facilitating the activation of its downstream signaling. These events culminated in up-regulation of the immunosuppressive cytokine IL-10 production, which was further associated with the down-regulation of macrophage MHC-II expression along with the up-regulation of CCR5 expression via engagement of STAT-3 in a positive feedback loop. Treatment of macrophages with CCR5 specific siRNA abrogated the IL-10 production and restored MHCII expression. While, in vivo CCR5 silencing was also effective for the restoration of host immune responses against tuberculosis. This study demonstrated that CCR5 played a very critical role for the immune subversion mechanism employed by the pathogen.  相似文献   
497.
Because microsatellite loci are abundant in the human genome and are highly polymorphic in most global populations, such loci have become very popular in studies on reconstructing evolutionary relationships among contemporary human populations. We have made an assessment of the efficiency of recovery of true evolutionary relationships using simulated data of microsatellite loci and a variety of distance measures. We find that allele frequency data on about 30 microsatellite loci and the use ofD A (Neiet al. 1983) orD c (Cavalli-Sforza and Edwards 1967) distance measures with UPGMA clustering algorithm can recover true short-term evolutionary relationships with a high degree of accuracy, unless the effective sizes of the populations or mutation rates or both are very small.  相似文献   
498.
499.
Tyrosyl DNA phosphodiesterase 1 (Tdp1) is a member of phospholipase D superfamily, which cleaves a broad range of 3′‐DNA adducts, the best characterized of which is the phosphodiester bond formed between DNA and topoisomerase IB. This study describes cloning and functional characterization of the enzyme, termed as LdTdp1 in the kinetoplastid parasite Leishmania donovani. Sequence analysis confirmed conservation of the active site motifs typical for all Tdp1 proteins. LdTdp1 activity was detected in the parasite nucleus as well as in the kinetoplast. The enzyme harbours a nuclear localization signal at its C‐terminus. Overexpression of the active enzyme protected the parasites against topoisomerase IB inhibitor camptothecin (CPT) and oxidative agent H2O2‐mediated cytotoxicity and its downregulation rendered the parasites hypersensitive to CPT. Trapping of mutant LdTdp1 on DNA takes place following CPT treatment in L. donovani cells. The expression level and associated activity of LdTdp1 were found to be higher in CPT‐resistant L. donovani parasites. Altogether, this is the first report of Tdp1 from the kinetoplastid parasite L. donovani, which actively participates in topoisomerase I‐mediated DNA damage repair process and thereby counteracts the cytotoxic effect of topoisomerase I inhibitors.  相似文献   
500.
Observations like high Zn2+ concentrations in senile plaques found in the brains of Alzheimer's patients and evidences emphasizing the role of Zn2+ in amyloid-β (Aβ)-induced toxicity have triggered wide interest in understanding the nature of Zn2+-Aβ interaction. In vivo and in vitro studies have shown that aggregation kinetics, toxicity, and morphology of Aβ aggregates are perturbed in the presence of Zn2+. Structural studies have revealed that Zn2+ has a binding site in the N-terminal region of monomeric Aβ, but not much is precisely known about the nature of binding of Zn2+ with aggregated forms of Aβ or its effect on the molecular structure of these aggregates. Here, we explore this aspect of the Zn2+-Aβ interaction using one- and two-dimensional 13C and 15N solid-state NMR. We find that Zn2+ causes major structural changes in the N-terminal and the loop region connecting the two β-sheets. It breaks the salt bridge between the side chains of Asp23 and Lys28 by driving these residues into nonsalt-bridge-forming conformations. However, the cross-β structure of Aβ42 aggregates remains unperturbed though the fibrillar morphology changes distinctly. We conclude that the salt bridge is not important for defining the characteristic molecular architecture of Aβ42 but is significant for determining its fibrillar morphology and toxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号