首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2596篇
  免费   130篇
  2023年   6篇
  2022年   11篇
  2021年   21篇
  2020年   10篇
  2019年   31篇
  2018年   28篇
  2017年   29篇
  2016年   35篇
  2015年   57篇
  2014年   74篇
  2013年   259篇
  2012年   123篇
  2011年   123篇
  2010年   81篇
  2009年   77篇
  2008年   148篇
  2007年   171篇
  2006年   175篇
  2005年   147篇
  2004年   173篇
  2003年   157篇
  2002年   146篇
  2001年   56篇
  2000年   48篇
  1999年   40篇
  1998年   51篇
  1997年   38篇
  1996年   26篇
  1995年   27篇
  1994年   19篇
  1993年   22篇
  1992年   28篇
  1991年   26篇
  1990年   24篇
  1989年   20篇
  1988年   16篇
  1987年   16篇
  1986年   14篇
  1985年   14篇
  1984年   25篇
  1983年   18篇
  1982年   12篇
  1981年   9篇
  1980年   18篇
  1979年   7篇
  1977年   8篇
  1976年   5篇
  1975年   9篇
  1969年   5篇
  1967年   6篇
排序方式: 共有2726条查询结果,搜索用时 31 毫秒
31.
32.
33.
Cyanobacterial genes for enzymes that desaturate fatty acids at the 12 position, designated desA, were isolated from Synechocystis PCC6714, Synechococcus PCC7002 and Anabaena variabilis by crosshybridization with a DNA probe derived from the desA gene of Synechocystis PCC6803. The genes of Synechocystis PCC6714, Synechococcus PCC7002 and A. variabilis encode proteins of 349, 347 and 350 amino acid residues, respectively. The transformation of Synechococcus PCC7942 with the desA genes from Synechocystis PCC6714, Synechococcus PCC7002 and A. variabilis was associated with the ability to introduce a second double bond at the 12 position of fatty acids. The amino acid sequence of the products of the desA genes revealed the presence of four conserved domains. Since one of the conserved domains was also found in the amino acid sequences of 3 desaturases of Brassica napus and mung bean, this domain may play an essential role in the introduction of a double bond into fatty acids bound to membrane lipids.Abbreviations X:Y(Z) fatty acid containing X carbon atoms with Y double bonds in the cis configuration at position Z counted from the carboxyl terminus  相似文献   
34.
Summary An in vitro culture of Alkanna tinctoria Tausch cells was set up in order to investigate the possibility of producing alkannin, a red naphthoquinone naturally present in the root bark of this plant. Furthermore, an in vitro culture of callusderived roots was established and the production of alkannin evaluated. In the different experimental conditions investigated, differences in the production of alkannin derivatives as well as in the type of pigments produced, were observed. The potential use of this technology is discussed.  相似文献   
35.
Summary All aphids harbor symbiotrophic prokaryotes (primary symbionts) in a specialized-abdominal cell, the bacteriocyte. Chaperonin 60 (Cpn60, symbionin) and chaperonin 10 (Cpn10), which are high and low molecular weight heatshock proteins, were sought in tissues of more than 60 aphid species. The endosymbionts were compared immunologically and histologically. It was demonstrated that (1) there are two types of aphids in terms of the endosymbiotic system: some with only primary symbionts and others with, in addition, secondary symbionts; (2) the primary symbionts of various aphids are quite similar in morphology whereas the secondary symbionts vary; and (3) irrespective of the aphid species, Cpn60 is abundant in both the primary and secondary symbionts, while Cpn10 is abundant in the secondary symbionts but present in small amounts in the primary ones. Based on these results, we suggest that the primary symbionts have been derived from a prokaryote that was acquired by the common ancestor of aphids whereas the secondary symbionts have been acquired by various aphids independently after divergence of the aphid species. In addition, we point out the possibility that the prokaryotes under intracellular conditions have been subject to some common evolutionary pressures, and as a result, have come to resemble cell organelles.  相似文献   
36.
The antitumor activity of peritoneal exudate cells (PEC) induced by murine interleukin-5 (mIL-5) was examined using Meth-A sarcoma cells transplanted into the peritoneal cavity of mice. Although in vitro treatment of Meth-A sarcoma cells with mIL-5 did not result in inhibition of their growth, treatment of mice intraperitoneally with mIL-5 (1 g/day) from day –5 to +5 (tumor cells were inoculated on day 0) led to a significant increase in survival or even rejection of tumor cells. This antitumor effect depended on the dose of mIL-5. Interestingly, there was identical therapeutic activity when the protocol of days –10 to –1 was used as opposed to –5 to +5. In addition, post-treatment with mIL-5 from day +1 to +10 was ineffective. This suggests that the therapeutic activity of IL-5 is largely prophylactic. Under the former condition, the number of PEC was found to increase over 50-fold when compared to levels in control mice. Moreover, the antitumor effect of mIL-5 was completely abolished by subcutaneous injection of anti-mIL-5 monoclonal antibodies. The treatment of mice injected intraperitoneally with human IL-2 also resulted in an increase in survival. Winn assay experiments using PEC recovered from mIL-5-treated mice (1g/day, from day –10 to –1) revealed that these PEC could mediate antitumor activity against Meth-A sarcoma cells. Furthermore, when the cured mice were re-injected with Meth-A sarcoma cells or syngeneic MOPC 104E cells, they could reject Meth-A sarcoma cells but not MOPC 104E cells, indicating that immune memory had been generated. These results suggest that IL-5 augumented the PEC tumoricidal activity but we have no indication that the tumoricidal activity was mediated through a mIL-5-dependent mechanism.  相似文献   
37.
Journal of Plant Research - A group of temperate grassland plant species termed the “Mansen elements” occurs in Japan and is widely distributed in the grasslands of continental East...  相似文献   
38.
The interaction between Escherichia coli O157:H7 and its specific bacteriophage PP01 was investigated in chemostat continuous culture. Following the addition of bacteriophage PP01, E. coli O157:H7 cell lysis was observed by over 4 orders of magnitude at a dilution rate of 0.876 h−1 and by 3 orders of magnitude at a lower dilution rate (0.327 h−1). However, the appearance of a series of phage-resistant E. coli isolates, which showed a low efficiency of plating against bacteriophage PP01, led to an increase in the cell concentration in the culture. The colony shape, outer membrane protein expression, and lipopolysaccharide production of each escape mutant were compared. Cessation of major outer membrane protein OmpC production and alteration of lipopolysaccharide composition enabled E. coli O157:H7 to escape PP01 infection. One of the escape mutants of E. coli O157:H7 which formed a mucoid colony (Mu) on Luria-Bertani agar appeared 56 h postincubation at a dilution rate of 0.867 h−1 and persisted until the end of the experiment (~200 h). Mu mutant cells could coexist with bacteriophage PP01 in batch culture. Concentrations of the Mu cells and bacteriophage PP01 increased together. The appearance of mutant phage, which showed a different host range among the O157:H7 escape mutants than wild-type PP01, was also detected in the chemostat culture. Thus, coevolution of phage and E. coli O157:H7 proceeded as a mutual arms race in chemostat continuous culture.  相似文献   
39.
40.
Although the AdhN/AdhN strain ofPeromyscus maniculatus (so-called ADH? deermouse) has been previously considered to be deficient in ADH, we found ADH isozymes of Classes II and III but not Class I in the liver of this strain. On the other hand, the AdhF/AdhF strain (so-called ADH+ deermouse), which has liver ADH activity, had Class I and III but not Class II ADH in the liver. In the stomach, Class III and IV ADHs were detected in both deermouse strains, as well as in the ddY mouse, which has the normal mammalian ADH system with four classes of ADH. These ADH isozymes were identified as electrophoretic phenotypes on the basis of their substrate specificity, pyrazole sensitivity, and immunoreactivity. Liver ADH activity of the ADH? strain was barely detectable in a conventional ADH assay using 15 mM ethanol as substrate; however, it increased markedly with high concentrations of ethanol (up to 3M) or hexenol (7 mM). Furthermore, in a hydrophobic reaction medium containing 1.0M t-butanol, liver ADH activity of this strain at low concentrations of ethanol (<100 mM) greatly increased (about sevenfold), to more than 50% that of ADH+ deermouse. These results were attributable to the presence of Class III ADH and the absence of Class I ADH in the liver of ADH? deermouse. It was also found that even the ADH+ strain has low liver ADH activity (<40% that of the ddY mouse) with 15 mM ethanol as substrate, probably due to low activity in Class I ADH. Consequently, liver ADH activity of this strain was lower than its stomach ADH activity, in contrast with the ddY mouse, whose ADH activity was much higher in the liver than in the stomach, as well as other mammals. Thus, the ADH systems in both ADH? and ADH+ deermouse were different not only from each other but also from that in the ddY mouse; the ADH? strain was deficient in only Class I ADH, and the ADH+ strain was deficient in Class II ADH and down-regulated in Class I ADH activity. Therefore, Class III ADH, which was found in both strains and activated allosterically, may participate in alcohol metabolism in deermouse, especially in the ADH? strain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号