首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   380篇
  免费   32篇
  2023年   2篇
  2022年   4篇
  2021年   8篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2017年   8篇
  2016年   6篇
  2015年   12篇
  2014年   21篇
  2013年   26篇
  2012年   27篇
  2011年   32篇
  2010年   16篇
  2009年   15篇
  2008年   11篇
  2007年   25篇
  2006年   23篇
  2005年   11篇
  2004年   16篇
  2003年   17篇
  2002年   19篇
  2001年   16篇
  2000年   6篇
  1999年   10篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1987年   3篇
  1985年   3篇
  1984年   3篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1976年   2篇
  1975年   8篇
  1974年   2篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
  1966年   1篇
  1964年   1篇
  1860年   2篇
排序方式: 共有412条查询结果,搜索用时 31 毫秒
281.
ADP-glucose (Glc) pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in starch biosynthesis. Higher plant ADP-Glc PPase is a heterotetramer (alpha(2)beta(2)) consisting of two small and two large subunits. There is increasing evidence that suggests that catalytic and regulatory properties of the enzyme from higher plants result from the synergy of both types of subunits. In Arabidopsis (Arabidopsis thaliana), two genes encode small subunits (APS1 and APS2) and four large subunits (APL1-APL4). Here, we show that in Arabidopsis, APL1 and APL2, besides their regulatory role, have catalytic activity. Heterotetramers formed by combinations of a noncatalytic APS1 and the four large subunits showed that APL1 and APL2 exhibited ADP-Glc PPase activity with distinctive sensitivities to the allosteric activator (3-phosphoglycerate). Mutation of the Glc-1-P binding site of Arabidopsis and potato (Solanum tuberosum) isoforms confirmed these observations. To determine the relevance of these activities in planta, a T-DNA mutant of APS1 (aps1) was characterized. aps1 is starchless, lacks ADP-Glc PPase activity, APS1 mRNA, and APS1 protein, and is late flowering in long days. Transgenic lines of the aps1 mutant, expressing an inactivated form of APS1, recovered the wild-type phenotype, indicating that APL1 and APL2 have catalytic activity and may contribute to ADP-Glc synthesis in planta.  相似文献   
282.
Covalent conjugates consisting of streptavidin and a 24-mer single-stranded DNA oligonucleotide have been oligomerized by cross-linking with a 5',5'-bis-biotinylated 169-base-pair double-stranded DNA (dsDNA) fragment. The oligomeric conjugates formed have been analyzed by nondenaturing gel electrophoresis and scanning-force microscopy (SFM). The comparison of analogous oligomers, prepared from native STV and the bis-biotinylated dsDNA fragment, revealed that the covalent STV-oligonucleotide hybrid conjugates self-assemble to generate oligomeric aggregates of significant smaller size, containing on average only about 2.5 times less dsDNA fragments per aggregate. Likely, this is a consequence of electrostatic or steric repulsion between the dsDNA and the single-stranded oligomer covalently attached to the hybrid, as indicated from control experiments. Nevertheless, the single-stranded oligonucleotide moiety within the oligomeric conjugates can be used as a selective molecular handle for further functionalization and manipulation. For instance, it was used for specific DNA-directed immobilization at a surface, previously functionalized with complementary capture oligonucleotides. Moreover, we demonstrate that macromolecules, such as STV and antibody molecules, which are tagged with the complementary oligonucleotide, specifically bind to the supramolecular DNA-STV oligomeric conjugates. This leads to a novel class of functional DNA-protein conjugates, suitable, for instance, as reagents in immuno-PCR or as building blocks in molecular nanotechnology.  相似文献   
283.
The chloroplast signal recognition particle consists of a conserved 54-kDa GTPase and a novel 43-kDa chromodomain protein (cpSRP43) that together bind light-harvesting chlorophyll a/b-binding protein (LHCP) to form a soluble targeting complex that is subsequently directed to the thylakoid membrane. Homology-based modeling of cpSRP43 indicates the presence of two previously identified chromodomains along with a third N-terminal chromodomain. Chromodomain deletion constructs were used to examine the role of each chromodomain in mediating distinct steps in the LHCP localization mechanism. The C-terminal chromodomain is completely dispensable for LHCP targeting/integration in vitro. The central chromodomain is essential for both targeting complex formation and integration because of its role in binding the M domain of cpSRP54. The N-terminal chromodomain (CD1) is unnecessary for targeting complex formation but is required for integration. This correlates with the ability of CD1 along with the ankyrin repeat region of cpSRP43 to regulate the GTPase cycle of the cpSRP-receptor complex.  相似文献   
284.
The bioactivity of galectin-1 in cell growth regulation and adhesion prompted us to answer the questions whether ligand presence and a shift to an aprotic solvent typical for bioaffinity chromatography might alter the shape of the homodimeric human lectin in solution. We used small angle neutron and synchrotron x-ray scattering studies for this purpose. Upon ligand accommodation, the radius of gyration of human galectin-1 decreased from 19.1 +/- 0.1 A in the absence of ligand to 18.2 +/- 0.1 A. In the aprotic solvent dimethyl sulfoxide, which did not impair binding capacity, galectin-1 formed dimers of a dimer, yielding tetramers with a cylindrical shape. Intriguingly, no dissociation into subunits occurred. In parallel, NMR monitoring was performed. The spectral resolution was in accord with these data. In contrast to the properties of the human protein, a nonhomologous agglutinin from mistletoe sharing galactose specificity was subject to a reduction in the radius of gyration from approximately 62 A in water to 48.7 A in dimethyl sulfoxide. Evidently, the solvent caused opposite responses in the two tested galactoside-binding lectins with different folding patterns. We have hereby proven that ligand presence and an aprotic solvent significantly affect the shape of galectin-1 in solution.  相似文献   
285.
An assay for very sensitive antigen detection is described which takes advantage of the self- assembly capabilities of semi-synthetic conjugates of DNA and proteins. The general scheme of this assay is similar to a two-sided (sandwich) enzyme-linked immunoassay (ELISA); however, covalent single-stranded DNA-streptavidin (STV) conjugates, capable of hybridizing to complementary surface-bound DNA oligomers, are utilized for the effective immobilization of either capture antibodies or antigens, rather than the chemi- or physisorption usually applied in ELISA. Immuno-PCR (IPCR) is employed as a method for signal generation, utilizing oligomeric reagents obtained by self-assembly of STV, biotinylated DNA and antibodies. In three different model systems, detecting human IgG, rabbit IgG or carcinoembryonic antigen, this combination allowed one to increase the sensitivity of the analogous ELISA approximately 1000-fold. For example, <0.1 amol/ micro l (15 pg/ml) of rabbit IgG was detectable. The immunoassay can be carried out in a single step by tagging the analyte with both reagents for capture and read-out simultaneously, thereby significantly reducing handling time and costs of analysis. Moreover, as the spatial selectivity of target immobilization is determined by the specificity of DNA base pairing, the assay is particularly suited for miniaturized microfluidics and lab-on-a-chip devices.  相似文献   
286.
Escherichia coli is a routinely used microbiological indicator of water quality. To determine whether holding time and storage conditions had an effect on E. coli densities in surface water, studies were conducted in three phases, encompassing 24 sites across the United States and four commonly used monitoring methods. During all three phases of the study, E. coli samples were analyzed at time 0 and at 8, 24, 30, and 48 h after sample collection. During phase 1, when 4 degrees C samples were evaluated by Colilert or by placing a membrane onto mFC medium followed by transfer to nutrient agar containing 4-methylumbelliferyl-beta-D-glucuronide (mFC/NA-MUG), three of four sites showed no significant differences throughout the 48-h study. During phase 2, five of seven sites showed no significant difference between time 0 and 24 h by membrane filtration (mFC/NA-MUG). When evaluated by the Colilert method, five of seven sites showed no significant difference in E. coli density between time 0 and 48 h. During phase 3, 8 of 13 sites showed no significant differences in E. coli densities between time 0 and the 48-h holding time, regardless of method. Based on the results of these studies, it appears that if samples are held below 10 degrees C and are not allowed to freeze, most surface water E. coli samples analyzed by commonly used methods beyond 8 h after sample collection can generate E. coli data comparable to those generated within 8 h of sample collection. Notwithstanding this conclusion, E. coli samples collected from surface waters should always be analyzed as soon as possible.  相似文献   
287.
Chronically inhaled endotoxin, which is ubiquitous in many occupational and domestic environments, can adversely affect the respiratory system resulting in an inflammatory response and decreased lung function. Surfactant-associated protein A (SP-A) is part of the lung innate immune system and may attenuate the inflammatory response in various types of lung injury. Using a murine model to mimic occupational exposures to endotoxin, we hypothesized that SP-A gene expression and protein would be elevated in response to repeat exposure to inhaled grain dust and to purified lipopolysaccharide (LPS). Our results demonstrate that repeat exposure to inhaled endotoxin, either in the form of grain dust or purified LPS, results in increased whole lung SP-A gene expression and type II alveolar epithelial cell hyperplasia, whereas SP-A protein levels in lung lavage fluid are decreased. Furthermore, these alterations in SP-A gene activity and protein metabolism are dependent on an intact endotoxin signaling system.  相似文献   
288.
Decision-making during host selection by phytophagous insects has proved to be related to host range, with specialists taking faster decisions than generalists; however, this pattern fails to materialize in some host selection studies performed with aphids. Differences found in testing designs point to rearing effects on aphid host selection. To test whether specialization patterns derive from the nature of the aphid or as a consequence of rearing environment, host selection behaviours were compared between the generalist Myzus persicae (Sulzer) s.s. and its subspecies specialized on tobacco when reared on a common host and offered the choice of an alternative host and a non-host plant. Pre-alighting (host finding and attraction towards host volatiles) and post-alighting (leaf surface exploration and probing) behaviours did not differ between the generalist and the tobacco-specialist, except in the allocation of time to probing behaviour; furthermore, all specialists chose the host on which they performed best. Thus, although the specialist was not faster than the generalist, it showed a higher level of commitment to its preferred host plant.  相似文献   
289.
Lin JC  Duell K  Saracino M  Konopka JB 《Biochemistry》2005,44(4):1278-1287
The alpha-factor receptor (Ste2p) stimulates mating of the yeast Saccharomyces cerevisiae. Ste2p belongs to the large family of G protein-coupled receptors that are characterized by seven transmembrane alpha-helices. Receptor activation is thought to involve changes in the packing of the transmembrane helix bundle. To identify residues that contribute to Ste2p activation, second-site suppressor mutations were isolated that restored function to defective receptors carrying either an F204S or Y266C substitution which affect residues at the extracellular ends of transmembrane domains 5 and 6, respectively. Thirty-five different suppressor mutations were identified. On their own, these mutations caused a range of phenotypes, including hypersensitivity, constitutive activity, altered ligand binding, and loss of function. The majority of the mutations affected residues in the transmembrane segments that are predicted to face the helix bundle. Many of the suppressor mutations caused constitutive receptor activity, suggesting they improved receptor function by partially restoring the balance between the active and inactive states. Analysis of mutations in transmembrane domain 7 implicated residues Ala281 and Thr282 in receptor activation. The A281T and T282A mutants were supersensitive to S. cerevisiae alpha-factor, but were defective in responding to a variant of alpha-factor produced by another species, Saccharomyces kluyveri. The A281T mutant also displayed 8.7-fold enhanced basal signaling. Interestingly, Ala281 and Thr282 are situated in approximately the same position as Lys296 in rhodopsin, which is covalently linked to retinal. These results suggest that transmembrane domain 7 plays a role in receptor activation in a wide range of G protein-coupled receptors from yeast to humans.  相似文献   
290.
We examined the kinetics of Galpha(s) and Galpha(i) regulation of human type V and type VI adenylyl cyclase (AC V and AC VI) in order to better model interactions between AC and its regulators. Activation of AC VI by Galpha(s) displayed classical Michaelis-Menten kinetics, whereas AC V activation by Galpha(s) was cooperative with a Hill coefficient of 1.4. The basal activity of human AC V, but not that of AC VI, was inhibited by Galpha(i). Both enzymes showed greater inhibition by Galpha(i) at low Galpha(s) concentrations; however, human AC V was activated by Galpha(i) at high Galpha(s) concentrations. Neither regulator had an effect on the K(m) for Mg-ATP. Mutations made within the Galpha(s) binding pocket of AC V (N1090D) and VI (F1078S) displayed 6- and 14-fold greater EC(50) values for Galpha(s) activation but had no effect on Galpha(i) inhibition of basal activity or K(m) for Mg-ATP. Galpha(s)-stimulated AC VI-F1078S was not significantly inhibited by Galpha(i), despite normal inhibition by Galpha(i) upon forskolin stimulation. Mechanistic models for Galpha(s) and Galpha(i) regulation of AC V and VI were derived to describe these results. Our models are consistent with previous studies, predicting a decrease in affinity of Galpha(i) in the presence of Galpha(s). For AC VI, Galpha(s) is required for inhibition but not binding by Galpha(i). For AC V, binding of two molecules of Galpha(s) and Galpha(i) to an AC dimer are required to fully describe the data. These models highlight the differences between AC V and VI and the complex interactions with two important regulators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号