首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   8篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   4篇
  2016年   4篇
  2015年   7篇
  2014年   15篇
  2013年   16篇
  2012年   14篇
  2011年   16篇
  2010年   8篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   7篇
  2005年   3篇
  2004年   5篇
  2003年   6篇
  2002年   4篇
  2001年   2篇
  1999年   2篇
  1997年   2篇
  1968年   1篇
排序方式: 共有137条查询结果,搜索用时 625 毫秒
61.

Purpose

The study aims to assess the tolerance of elderly patients (70 years or older) with locally advanced rectal cancers to image-guided radiotherapy (IGRT). A retrospective review of 13 elderly patients with locally advanced rectal cancer who underwent preoperative chemoradiation using IGRT was performed. Grade 3–4 acute toxicities, survival, and long-term complications were compared to 17 younger patients (<70 years) with the same disease stage.

Results

Grade 3–4 hematologic toxicities occurred in 7.6% and 0% (p = 0.4) and gastrointestinal toxicities, and, in 15.2% and 5% (p = 0.5), of elderly and younger patients, respectively. Surgery was aborted in three patients, two in the elderly group and one in the younger group. One patient in the elderly group died after surgery from cardiac arrhythmia. After a median follow-up of 34 months, five patients had died, two in the elderly and three in the younger group. The 3-year survival was 90.9% and 87.5% (p = 0.7) for the elderly and younger group respectively. Two patients in the younger group developed ischemic colitis and fecal incontinence. There was no statistically significant difference in acute and late toxicities as well as survival between the two groups.

Conclusions and Clinical Relevance

Elderly patients with locally advanced rectal cancers may tolerate preoperative chemoradiation with IGRT as well as younger patients. Further prospective studies should be performed to investigate the potential of IGRT for possible cure in elderly patients with locally advanced rectal cancer.  相似文献   
62.
Due to a combination of efforts from individual laboratories and structural genomics centers, there has been a surge in the number of members of the Gcn5‐related acetyltransferasesuperfamily that have been structurally determined within the past decade. Although the number of three‐dimensional structures is increasing steadily, we know little about the individual functions of these enzymes. Part of the difficulty in assigning functions for members of this superfamily is the lack of information regarding how substrates bind to the active site of the protein. The majority of the structures do not show ligand bound in the active site, and since the substrate‐binding domain is not strictly conserved, it is difficult to predict the function based on structure alone. Additionally, the enzymes are capable of acetylating a wide variety of metabolites and many may exhibit promiscuity regarding their ability to acetylate multiple classes of substrates, possibly having multiple functions for the same enzyme. Herein, we present an approach to identify potential substrates for previously uncharacterized members of the Gcn5‐related acetyltransferase superfamily using a variety of metabolites including polyamines, amino acids, antibiotics, peptides, vitamins, catecholamines, and other metabolites. We have identified potential substrates for eight bacterial enzymes of this superfamily. This information will be used to further structurally and functionally characterize them.  相似文献   
63.
64.
A growing body of research, generated primarily from MRI-based studies, shows that migraine appears to occur, and possibly endure, due to the alteration of specific neural processes in the central nervous system. However, information is lacking on the molecular impact of these changes, especially on the endogenous opioid system during migraine headaches, and neuronavigation through these changes has never been done. This study aimed to investigate, using a novel 3D immersive and interactive neuronavigation (3D-IIN) approach, the endogenous µ-opioid transmission in the brain during a migraine headache attack in vivo. This is arguably one of the most central neuromechanisms associated with pain regulation, affecting multiple elements of the pain experience and analgesia. A 36 year-old female, who has been suffering with migraine for 10 years, was scanned in the typical headache (ictal) and nonheadache (interictal) migraine phases using Positron Emission Tomography (PET) with the selective radiotracer [11C]carfentanil, which allowed us to measure µ-opioid receptor availability in the brain (non-displaceable binding potential - µOR BPND). The short-life radiotracer was produced by a cyclotron and chemical synthesis apparatus on campus located in close proximity to the imaging facility. Both PET scans, interictal and ictal, were scheduled during separate mid-late follicular phases of the patient''s menstrual cycle. During the ictal PET session her spontaneous headache attack reached severe intensity levels; progressing to nausea and vomiting at the end of the scan session. There were reductions in µOR BPND in the pain-modulatory regions of the endogenous µ-opioid system during the ictal phase, including the cingulate cortex, nucleus accumbens (NAcc), thalamus (Thal), and periaqueductal gray matter (PAG); indicating that µORs were already occupied by endogenous opioids released in response to the ongoing pain. To our knowledge, this is the first time that changes in µOR BPND during a migraine headache attack have been neuronavigated using a novel 3D approach. This method allows for interactive research and educational exploration of a migraine attack in an actual patient''s neuroimaging dataset.  相似文献   
65.
Intraspecific variation can have a major impact on plant community composition yet there is little information available on the extent that such variation by an already established species affects interspecific interactions of an invading species. The current research examined the competitiveness of clones of a globally rare but locally common native grass, Calamagrostis porteri ssp. insperata to invasion by Alliaria petiolata, a non‐native invasive species. A greenhouse experiment was conducted twice over consecutive years in which 15 clones from three populations of Calamagrostis were paired with rosettes of Alliaria in pots containing native forest soil previously uninvaded by Alliaria. Both species showed a negative response to the presence of the other species, although Alliaria more so than Calamagrostis. Moreover, the effect of Calamagrostis depended upon population, and, to a lesser extent, the individual clone paired with Alliaria. Competitive effects were stronger in the first experiment compared with when the experiment was repeated in the second year. The influence of Calamagrostis clones on the outcome of the experiment varied among populations and among clones, but also between years. Clones from one of the three populations were more influential than clones from the other two populations. Only one of 15 clones, both from the same population, was influential in both experiments. This research supports a growing literature indicating that intraspecific variability among clones of a dominant species can affect interspecific interactions and that such variability in a native species can affect performance of an invading species.  相似文献   
66.
Transcranial Direct Current Stimulation (tDCS) is a method of non-invasive brain stimulation that has been frequently used in experimental and clinical pain studies. However, the molecular mechanisms underlying tDCS-mediated pain control, and most important its placebo component, are not completely established. In this pilot study, we investigated in vivo the involvement of the endogenous μ-opioid system in the global tDCS-analgesia experience. Nine healthy volunteers went through positron emission tomography (PET) scans with [11C]carfentanil, a selective μ-opioid receptor (MOR) radiotracer, to measure the central MOR activity during tDCS in vivo (non-displaceable binding potential, BPND) - one of the main analgesic mechanisms in the brain. Placebo and real anodal primary motor cortex (M1/2mA) tDCS were delivered sequentially for 20 minutes each during the PET scan. The initial placebo tDCS phase induced a decrease in MOR BPND in the periaqueductal gray matter (PAG), precuneus, and thalamus, indicating activation of endogenous μ-opioid neurotransmission, even before the active tDCS. The subsequent real tDCS also induced MOR activation in the PAG and precuneus, which were positively correlated to the changes observed with placebo tDCS. Nonetheless, real tDCS had an additional MOR activation in the left prefrontal cortex. Although significant changes in the MOR BPND occurred with both placebo and real tDCS, significant analgesic effects, measured by improvements in the heat and cold pain thresholds, were only observed after real tDCS, not the placebo tDCS. This study gives preliminary evidence that the analgesic effects reported with M1-tDCS, can be in part related to the recruitment of the same endogenous MOR mechanisms induced by placebo, and that such effects can be purposely optimized by real tDCS.  相似文献   
67.
PML regulates PER2 nuclear localization and circadian function   总被引:1,自引:0,他引:1  
  相似文献   
68.
Ch-mAb7F9, a human-mouse chimeric monoclonal antibody (mAb) designed to bind (+)-methamphetamine (METH) with high affinity and specificity, was produced as a treatment medication for METH abuse. In these studies, we present the preclinical characterization that provided predictive evidence that ch-mAb7F9 may be safe and effective in humans. In vitro ligand binding studies showed that ch-mAb7F9 is specific for and only binds its target ligands (METH, (+)-amphetamine, and 3,4-methylenedioxy-N-methylamphetamine) with high affinity. It did not bind endogenous neurotransmitters or other medications and was not bound by protein C1q, thus it is unlikely to stimulate in vivo complement-dependent cytotoxicity. Isothermal titration calorimetry potency studies showed that METH binding by ch-mAb7F9 is efficient. Pharmacokinetic studies of METH given after ch-mAb7F9 doses in rats demonstrated the in vivo application of these in vitro METH-binding characteristics. While METH had little effect on ch-mAb7F9 disposition, ch-mAb7F9 substantially altered METH disposition, dramatically reducing the volume of distribution and clearance of METH. The elimination half-life of METH was increased by ch-mAb7F9, but it was still very fast compared with the elimination of ch-mAb7F9. Importantly, the rapid elimination of unbound METH combined with previous knowledge of mAb:target ligand binding dynamics suggested that ch-mAb7F9 binding capacity regenerates over time. This finding has substantial therapeutic implications regarding the METH doses against which ch-mAb7F9 will be effective, on the duration of ch-mAb7F9 effects, and on the safety of ch-mAb7F9 in METH users who use METH while taking ch-mAb7F9. These results helped to support initiation of a Phase 1a study of ch-mAb7F9.  相似文献   
69.
Heterochromatin formation and nuclear organization are important in gene regulation and genome fidelity. Proteins involved in gene silencing localize to sites of damage and some DNA repair proteins localize to heterochromatin, but the biological importance of these correlations remains unclear. In this study, we examined the role of double-strand-break repair proteins in gene silencing and nuclear organization. We find that the ATM kinase Tel1 and the proteins Mre11 and Esc2 can silence a reporter gene dependent on the Sir, as well as on other repair proteins. Furthermore, these proteins aid in the localization of silenced domains to specific compartments in the nucleus. We identify two distinct mechanisms for repair protein–mediated silencing—via direct and indirect interactions with Sir proteins, as well as by tethering loci to the nuclear periphery. This study reveals previously unknown interactions between repair proteins and silencing proteins and suggests insights into the mechanism underlying genome integrity.  相似文献   
70.
Cannabidiol (CBD) is a cannabinoid component of marijuana that has no significant activity at cannabinoid receptors or psychoactive effects. There is considerable interest in CBD as a therapy for epilepsy. Almost a third of epilepsy patients are not adequately controlled by clinically available anti-seizure drugs (ASDs). Initial studies appear to demonstrate that CBD preparations may be a useful treatment for pharmacoresistant epilepsy. The National Institute of Neurological Disorders and Stroke (NINDS) funded Epilepsy Therapy Screening Program (ETSP) investigated CBD in a battery of seizure models using a refocused screening protocol aimed at identifying pharmacotherapies to address the unmet need in pharmacoresistant epilepsy. Applying this new screening workflow, CBD was investigated in mouse 6 Hz 44 mA, maximal electroshock (MES), corneal kindling models and rat MES and lamotrigine-resistant amygdala kindling models. Following intraperitoneal (i.p.) pretreatment, CBD produced dose-dependent protection in the acute seizure models; mouse 6 Hz 44 mA (ED50 164 mg/kg), mouse MES (ED50 83.5 mg/kg) and rat MES (ED50 88.9 mg/kg). In chronic models, CBD produced dose-dependent protection in the corneal kindled mouse (ED50 119 mg/kg) but CBD (up to 300 mg/kg) was not protective in the lamotrigine-resistant amygdala kindled rat. Motor impairment assessed in conjunction with the acute seizure models showed that CBD exerted seizure protection at non-impairing doses. The ETSP investigation demonstrates that CBD exhibits anti-seizure properties in acute seizure models and the corneal kindled mouse. However, further preclinical and clinical studies are needed to determine the potential for CBD to address the unmet needs in pharmacoresistant epilepsy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号