首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   15篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   10篇
  2015年   5篇
  2014年   4篇
  2013年   14篇
  2012年   10篇
  2011年   7篇
  2010年   10篇
  2009年   7篇
  2008年   13篇
  2007年   8篇
  2006年   4篇
  2005年   11篇
  2004年   10篇
  2003年   1篇
  2002年   6篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1995年   3篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1976年   1篇
排序方式: 共有157条查询结果,搜索用时 78 毫秒
71.
Transgenerational effects have wide-ranging implications for human health, biological adaptation, and evolution; however, their mechanisms and biology remain poorly understood. Here, we demonstrate that a germline nuclear small RNA/chromatin pathway can maintain stable inheritance for many generations when triggered by a piRNA-dependent foreign RNA response in C. elegans. Using forward genetic screens and candidate approaches, we find that a core set of nuclear RNAi and chromatin factors is required for multigenerational inheritance of environmental RNAi and piRNA silencing. These include a germline-specific nuclear Argonaute HRDE1/WAGO-9, a HP1 ortholog HPL-2, and two putative histone methyltransferases, SET-25 and SET-32. piRNAs can trigger highly stable long-term silencing lasting at least 20 generations. Once established, this long-term memory becomes independent of the piRNA trigger but remains dependent on the nuclear RNAi/chromatin pathway. Our data present a multigenerational epigenetic inheritance mechanism induced by piRNAs.  相似文献   
72.
73.
74.
Coccidiosis in chickens is caused by 7 species of Eimeria. Even though coccidiosis is a complex disease that can be caused by any combination of these species, most of the molecular research concerning chicken coccidiosis has been limited to Eimeria tenella. The present study describes the first large-scale analysis of expressed sequence tags (ESTs) generated primarily from second-stage merozoites (and schizonts) of E. acervulina. In total, 1,847 ESTs were sequenced; these represent 1,026 unique sequences. Approximately half of the ESTs encode proteins of unknown function, or hypothetical proteins. Twenty-nine percent of the E. acervulina ESTs share significant sequence identity with sequences in the E. tenella genome. Additionally, EST hits seem to be much different compared with those of E. tenella. One of the differences is the very low number of ESTs that encode putative microneme proteins. This study underlines the potential differences in the molecular aspects of 2 Eimeria species that in the past were thought to be highly similar in nature.  相似文献   
75.
Wolves (Canis lupus) have recently expanded their distribution range into western and southern Finland, which has not hosted breeding wolves for over 100 years. This has raised concerns and public debate over wolf-livestock conflicts. Between 1998 and 2004 there were 45 wolf attacks on sheep on 34 farms. To assess the risk wolves may pose to sheep husbandry, we used data on depredation, sheep management, landscape structure and moose and wolf populations from continental Finland outside the area of reindeer husbandry to build models of the factors that may predispose sheep farms to wolf depredation. Our results provided evidence that sheep farms with the highest risk of wolf depredation were those located in regions where wolves were abundant. These farms were usually located close to the Russian border where the landscape is a mosaic of forest, wetlands and clear cut areas. These regions are sparsely populated by humans and farms are located far from each other. Finally, we generated probability maps based on generalised additive modelling to predict the risk of wolf predation on livestock in farms of southern Finland.  相似文献   
76.
77.
78.
Aim Understanding the spatial patterns of species distribution and predicting the occurrence of high biological diversity and rare species are central themes in biogeography and environmental conservation. The aim of this study was to model and scrutinize the relative contributions of climate, topography, geology and land‐cover factors to the distributions of threatened vascular plant species in taiga landscapes in northern Finland. Location North‐east Finland, northern Europe. Methods The study was performed using a data set of 28 plant species and environmental variables at a 25‐ha resolution. Four different stepwise selection algorithms [Akaike information criterion (AIC), Bayesian information criterion (BIC), adaptive backfitting, cross selection] with generalized additive models (GAMs) were fitted to identify the main environmental correlates for species occurrences. The accuracies of the distribution models were evaluated using fourfold cross‐validation based on the area under the curve (AUC) derived from receiver operating characteristic plots. The GAMs were tentatively extrapolated to the whole study area and species occurrence probability maps were produced using GIS techniques. The effect of spatial autocorrelation on the modelling results was also tested by including autocovariate terms in the GAMs. Results According to the AUC values, the model performance varied from fair to excellent. The AIC algorithm provided the highest mean performance (mean AUC = 0.889), whereas the lowest mean AUC (0.851) was obtained from BIC. Most of the variation in the distribution of threatened plant species was related to growing degree days, temperature of the coldest month, water balance, cover of mire and mean elevation. In general, climate was the most powerful explanatory variable group, followed by land cover, topography and geology. Inclusion of the autocovariate only slightly improved the performance of the models and had a minor effect on the importance of the environmental variables. Main conclusions The results confirm that the landscape‐scale distribution patterns of plant species can be modelled well on the basis of environmental parameters. A spatial grid system with several environmental variables derived from remote sensing and GIS data was found to produce useful data sets, which can be employed when predicting species distribution patterns over extensive areas. Landscape‐scale maps showing the predicted occurrences of individual or multiple threatened plant species may provide a useful basis for focusing field surveys and allocating conservation efforts.  相似文献   
79.
80.
Sequence data for type I interferons (IFNs) have previously only been available for birds and eutherian ('placental') mammals, but not for the other two groups of extant mammals, the marsupials and monotremes. This has left a large gap in our knowledge of the evolutionary and functional relationships of what is a complex gene family in eutherians. In this study, a PCR-based survey of type I IFN genes from a marsupial, the tammar wallaby (Macropus eugenii), and a monotreme, the short-beaked echidna (Tachyglossus aculeatus), was conducted. Along with Southern blot and phylogenetic analysis, this revealed a large number of type I IFN genes for the wallaby, rivalling that of eutherians, but relatively few type I IFN genes in the echidna. The wallaby genes include both IFNA and IFNB orthologues, indicating that the gene duplication leading to these subtypes occurred prior to the divergence of marsupials and eutherians some 130 million years ago. Results from this study support the idea that the expansion of type I IFN gene complexity in mammals coincides with a concomitant expansion in the functionality of these molecules. For example, this expansion in complexity may have, at least partially, facilitated the evolution of viviparity in marsupials and eutherians. Other evolutionary aspects of these sequences are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号