首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3144篇
  免费   135篇
  国内免费   1篇
  3280篇
  2023年   33篇
  2022年   50篇
  2021年   80篇
  2020年   53篇
  2019年   57篇
  2018年   94篇
  2017年   73篇
  2016年   120篇
  2015年   135篇
  2014年   157篇
  2013年   241篇
  2012年   285篇
  2011年   238篇
  2010年   147篇
  2009年   147篇
  2008年   165篇
  2007年   149篇
  2006年   128篇
  2005年   111篇
  2004年   88篇
  2003年   92篇
  2002年   51篇
  2001年   52篇
  2000年   36篇
  1999年   34篇
  1998年   22篇
  1997年   18篇
  1996年   19篇
  1995年   14篇
  1994年   9篇
  1993年   8篇
  1992年   25篇
  1991年   19篇
  1990年   22篇
  1989年   17篇
  1988年   24篇
  1987年   18篇
  1986年   22篇
  1985年   23篇
  1984年   19篇
  1983年   24篇
  1982年   13篇
  1981年   13篇
  1979年   18篇
  1978年   9篇
  1977年   12篇
  1974年   12篇
  1972年   18篇
  1971年   12篇
  1969年   10篇
排序方式: 共有3280条查询结果,搜索用时 15 毫秒
11.
The distribution of 3[H] arachidonic acid incorporated into cultured mouse peritoneal macrophages was assessed upon stimulation of the cells with either the calcium ionophore A23187 or zymosan. After a labeling time of 24 h, cells were stimulated and processed for light and electron microscopic autoradiography. Grains were primarily localized over the plasma membrane and lipid-containing vesicles of both control and stimulated cells. In macrophages stimulated with ionophore, a decreased labeling density was evident in both of these cell compartments. Similar alterations in labeling pattern were observed in zymosan treated cells, although a larger decline in grain density occurred from the plasma membrane compartment. Immunocytochemical localization of PGE2, a major eicosanoid product released upon ionophore stimulation, revealed the presence of the prostaglandin in clear vesicular structures, many of which appear to be continuous with the plasma membrane. These results provide morphological evidence that different cellular pools of arachidonic acid may be differentially mobilized for eicosanoid production as a function of the mode of stimulation.  相似文献   
12.
M P Rols  F Dahhou  K P Mishra  J Teissié 《Biochemistry》1990,29(12):2960-2966
Cells can be made temporarily permeable if pulsed by high-intensity short-duration electric fields. The molecular mechanisms underlying this electropermeabilization are still unknown. The kinetic events may be described by four successive steps: induction, expansion, stabilization, and resealing. On one hand, cell electropermeabilization is detected only under more stringent conditions when cells have been treated by ethanol. On the other hand, lysolecithin is observed to facilitate cell electropermeabilization. More precisely, these molecules that modify membrane order, when used in concentrations compatible with cell viability, are shown to affect only the expansion and resealing steps. Electropermeabilization is inducing a transition in the membrane organization. Membrane order is modulating the energy barrier needed to evoke this membrane transition which occurs when cells are submitted to a field larger than a characteristic threshold (expansion step). Less order would increase the magnitude of this energy barrier; more order would decrease it.  相似文献   
13.
14.
15.
We have developed a one-dimensional tumour simulator to describe the biodistribution of chemotherapeutic drugs to a tumoral lesion and the tumour cell’s response to therapy. A three-compartment model is used for drug dynamics within the tumour. The first compartment represents the extracellular space in which cells move, the second corresponds to the intracellular fluid space (including cell membrane) which is in direct equilibrium with the extracellular space, and the third is a non-exchangeable compartment that represents sequestered drug which is trapped in the nucleus to damage the cellular DNA, directly triggering cell death. Analytical and numerical techniques (Finite Element Method) are used to describe the tumour’s response to therapy and the effect of parameter variation on the drug concentration profiles in the three compartments.  相似文献   
16.
Post-translational modifications (PTMs) of histones play an important role in many cellular processes, notably gene regulation. Using a combination of mass spectrometric and immunobiochemical approaches, we show that the PTM profile of histone H3 differs significantly among the various model organisms examined. Unicellular eukaryotes, such as Saccharomyces cerevisiae (yeast) and Tetrahymena thermophila (Tet), for example, contain more activation than silencing marks as compared with mammalian cells (mouse and human), which are generally enriched in PTMs more often associated with gene silencing. Close examination reveals that many of the better-known modified lysines (Lys) can be either methylated or acetylated and that the overall modification patterns become more complex from unicellular eukaryotes to mammals. Additionally, novel species-specific H3 PTMs from wild-type asynchronously grown cells are also detected by mass spectrometry. Our results suggest that some PTMs are more conserved than previously thought, including H3K9me1 and H4K20me2 in yeast and H3K27me1, -me2, and -me3 in Tet. On histone H4, methylation at Lys-20 showed a similar pattern as H3 methylation at Lys-9, with mammals containing more methylation than the unicellular organisms. Additionally, modification profiles of H4 acetylation were very similar among the organisms examined.  相似文献   
17.
Thermostable direct hemolysin (TDH) is a ~19 kDa, hemolytic pore-forming toxin from the gram-negative marine bacterium Vibrio parahaemolyticus, one of the causative agents of seafood-borne acute gastroenteritis and septicemia. Previous studies have established that TDH exists as a tetrameric assembly in physiological state; however, there is limited knowledge regarding the molecular arrangement of its disordered N-terminal region (NTR)—the absence of which has been shown to compromise TDH's hemolytic and cytotoxic abilities. In our current study, we have employed single-particle cryo-electron microscopy to resolve the solution-state structures of wild-type TDH and a TDH construct with deletion of the NTR (NTD), in order to investigate structural aspects of NTR on the overall tetrameric architecture. We observed that both TDH and NTD electron density maps, resolved at global resolutions of 4.5 and 4.2 Å, respectively, showed good correlation in their respective oligomeric architecture. Additionally, we were able to locate extra densities near the pore opening of TDH which might correspond to the disordered NTR. Surprisingly, under cryogenic conditions, we were also able to observe novel supramolecular assemblies of TDH tetramers, which we were able to resolve to 4.3 Å. We further investigated the tetrameric and inter-tetrameric interaction interfaces to elaborate upon the key residues involved in both TDH tetramers and TDH super assemblies. Our current structural study will aid in understanding the mechanistic aspects of this pore-forming toxin and the role of its disordered NTR in membrane interaction.  相似文献   
18.
In the present study the haemolytic and proteolytic activity of extracellular products (ECP) secreted from Aeromonas hydrophila (CAHH14 strain) were studied with respect to temperature and different time of incubation as well as its lethal toxicity on rohu, Labeo rohita. The strain was isolated from Catla catla (showing abdominal dropsy symptom) collected from the pond of Central Institute of Freshwater Aquaculture (CIFA), Bhubaneswar, India and was characterized on the basis of biochemical tests. The highest production of haemolysin was achieved when the bacteria was grown at 35°C for 30 h. The proteolytic activity was found to be highest when the bacterium was grown at 30°C for 36 h. The haemolytic and proteolytic toxin produced by Aeromonas hydrophila was found to be lethal to rohu (LD50 1.7 × 104 cfu/ml). The lethality of ECP was decreased by heating and completely inactivated by boiling at 100°C for 10 min. This indicates that protease activity and haemolytic activity of A. hydrophila ECP was temperature dependant.  相似文献   
19.
Biotin synthesis in Escherichia coli requires the functions of the bioH and bioC genes to synthesize the precursor pimelate moiety by use of a modified fatty acid biosynthesis pathway. However, it was previously noted that bioH has been replaced with bioG or bioK within the biotin synthetic gene clusters of other bacteria. We report that each of four BioG proteins from diverse bacteria and two cyanobacterial BioK proteins functionally replace E. coli BioH in vivo. Moreover, purified BioG proteins have esterase activity against pimeloyl-ACP methyl ester, the physiological substrate of BioH. Two of the BioG proteins block biotin synthesis when highly expressed and these toxic proteins were shown to have more promiscuous substrate specificities than the non-toxic BioG proteins. A postulated BioG-BioC fusion protein was shown to functionally replace both the BioH and BioC functions of E. coli. Although the BioH, BioG and BioK esterases catalyze a common reaction, the proteins are evolutionarily distinct.  相似文献   
20.
The first total synthesis of prasinic acid is being reported along with its biological evaluation. The ten step synthesis involved readily available and cheap starting materials and can easily be transposed to large scale manufacturing. The crucial steps of the synthesis included the formation of two different aromatic units (7 and 9) and their coupling reaction. The synthetic prasinic acid exhibited moderate antitumor activity (IC50 4.3–9.1 μM) in different lines of cancer cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号