首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   17篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   14篇
  2013年   10篇
  2012年   14篇
  2011年   20篇
  2010年   2篇
  2009年   6篇
  2008年   7篇
  2007年   7篇
  2006年   13篇
  2005年   8篇
  2004年   9篇
  2003年   8篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1990年   1篇
  1989年   1篇
  1984年   1篇
排序方式: 共有157条查询结果,搜索用时 62 毫秒
51.
52.
53.
Because most "low fouling" polymers resisting bacterial attachment are hydrophilic, they are usually also significantly swollen. Swelling leads to purely physical dilution of interaction and weakens attachment; however, these nonspecific contributions are usually not separated from the specific effect of polymer chemistry. Taking advantage of the fact that chemistry and swelling of hydrogels may be independently varied through the fraction of a cross-linker, the roles of chemistry and physical dilution (swelling) in bacterial attachment are analyzed for selected hydrogels. Using as a quantitative indicator the rate of bacterial deposition in a parallel plate setup under defined flow conditions, the observed correlation of deposition rate with swelling provides a straightforward comparison of gels with different chemistries that can factor out the effect of swelling. In particular, it is found that chemistry appears to contribute similarly to bacterial deposition on hydrogels prepared from acrylamide and a zwitterioninic monomer 2-(methacryloyloxy)ethyl) dimethyl-(3-sulfopropyl) ammonium hydroxide so that the observed differences may be related to swelling only. In contrast, these gels were inferior to PEG-based hydrogels, even when swelling of the latter was lower, indicating a greater contribution of PEG chemistry to reduced bacterial deposition. This demonstrates that swelling must be accounted for when comparing different biofouling-resistant materials. Chemical and physical principles may be combined in hydrogel coatings to develop efficient antibiofouling surfaces.  相似文献   
54.
STAT-3 activates NF-kappaB in chronic lymphocytic leukemia cells   总被引:1,自引:0,他引:1  
NF-κB plays a major role in the pathogenesis of B-cell neoplasms. A broad array of mostly extracellular stimuli has been reported to activate NF-κB, to various degrees, in chronic lymphocytic leukemia (CLL) cells. Because CLL cells harbor high levels of unphosphorylated STAT-3 (USTAT-3) and USTAT-3 was reported to activate NF-κB, we sought to determine whether USTAT-3 activates NF-κB in CLL. Using the electrophoretic mobility shift assay (EMSA), we studied peripheral blood low-density cells from 15 patients with CLL and found that CLL cell nuclear extracts from all the samples bound to an NF-κB DNA probe, suggesting that NF-κB is constitutively activated in CLL. Immunoprecipitation studies showed that STAT-3 bound NF-κB p65, and confocal microscopy studies detected USTAT-3/NF-κB complexes in the nuclei of CLL cells, thereby confirming these findings. Furthermore, infection of CLL cells with retroviral STAT-3-short hairpin RNA attenuated the binding of NF-κB to DNA, as assessed by EMSA, and downregulated mRNA levels of NF-κB-regulated genes, as assessed by quantitative PCR. Taken together, our data suggest that USTAT-3 binds to the NF-κB p50/p65 dimers and that the USTAT-3/NF-κB complexes bind to DNA and activate NF-κB-regulated genes in CLL cells.  相似文献   
55.
Patients with prolonged myelosuppression require frequent platelet and occasional granulocyte transfusions. Multi-donor transfusions induce alloimmunization, thereby increasing morbidity and mortality. Therefore, an autologous or HLA-matched allogeneic source of platelets and granulocytes is needed. To determine whether nonhematopoietic cells can be reprogrammed into hematopoietic cells, human mesenchymal stromal cells (MSCs) and skin fibroblasts were incubated with the demethylating agent 5-azacytidine (Aza) and the growth factors (GF) granulocyte-macrophage colony-stimulating factor and stem cell factor. This treatment transformed MSCs to round, non-adherent cells expressing T-, B-, myeloid-, or stem/progenitor-cell markers. The transformed cells engrafted as hematopoietic cells in bone marrow of immunodeficient mice. DNA methylation and mRNA array analysis suggested that Aza and GF treatment demethylated and activated HOXB genes. Indeed, transfection of MSCs or skin fibroblasts with HOXB4, HOXB5, and HOXB2 genes transformed them into hematopoietic cells. Further studies are needed to determine whether transformed MSCs or skin fibroblasts are suitable for therapy.  相似文献   
56.
The late-phase of long-term potentiation (L-LTP), the cellular correlate of long-term memory, induced at some synapses facilitates L-LTP expression at other synapses receiving stimulation too weak to induce L-LTP by itself. Using glutamate uncaging and two-photon imaging, we demonstrate that the efficacy of this facilitation decreases with increasing time between stimulations, increasing distance between stimulated spines and with the spines being on different dendritic branches. Paradoxically, stimulated spines compete for L-LTP expression if stimulated too closely together in time. Furthermore, the facilitation is temporally bidirectional but asymmetric. Additionally, L-LTP formation is itself biased toward occurring on spines within a branch. These data support the Clustered Plasticity Hypothesis, which states that such spatial and temporal limits lead to stable engram formation, preferentially at synapses clustered within dendritic branches rather than dispersed throughout the dendritic arbor. Thus, dendritic branches rather than individual synapses are the primary functional units for long-term memory storage.  相似文献   
57.
The leucine rich repeat (LRR) motif that participates in many biomolecular recognition events in cells was suggested as a general scaffold for producing artificial receptors. We describe here the design and first total chemical synthesis of small LRR proteins, and their structural analysis. When evaluating the tertiary structure as a function of different number of repeating units (1-3), we were able to find that the 3-repeats sequence, containing 90 amino acids, folds into the expected structure.  相似文献   
58.
Sphingolipids (SLs) act as signaling molecules and as structural components in both neuronal cells and myelin. We now characterize the biochemical, histological, and behavioral abnormalities in the brain of a mouse lacking very long acyl (C22-C24) chain SLs. This mouse, which is defective in the ability to synthesize C22-C24-SLs due to ablation of ceramide synthase 2, has reduced levels of galactosylceramide (GalCer), a major component of myelin, and in particular reduced levels of non-hydroxy-C22-C24-GalCer and 2-hydroxy-C22-C24- GalCer. Noteworthy brain lesions develop with a time course consistent with a vital role for C22-C24-GalCer in myelin stability. Myelin degeneration and detachment was observed as was abnormal motor behavior originating from a subcortical region. Additional abnormalities included bilateral and symmetrical vacuolization and gliosis in specific brain areas, which corresponded to some extent to the pattern of ceramide synthase 2 expression, with astrogliosis considerably more pronounced than microglial activation. Unexpectedly, unidentified storage materials were detected in lysosomes of astrocytes, reminiscent of the accumulation that occurs in lysosomal storage disorders. Together, our data demonstrate a key role in the brain for SLs containing very long acyl chains and in particular GalCer with a reduction in their levels leading to distinctive morphological abnormalities in defined brain regions.  相似文献   
59.
The crystal structure of Phenylalanyl‐tRNA synthetase from E. coli (EcPheRS), a class II aminoacyl‐tRNA synthetase, complexed with phenylalanine and AMP was determined at 3.05 Å resolution. EcPheRS is a (αβ)2 heterotetramer: the αβ heterodimer of EcPheRS consists of 11 structural domains. Three of them: the N‐terminus, A1 and A2 belong to the α‐subunit and B1‐B8 domains to the β subunit. The structure of EcPheRS revealed that architecture of four helix‐bundle interface, characteristic of class IIc heterotetrameric aaRSs, is changed: each of the two long helices belonging to CLM transformed into the coil‐short helix structural fragments. The N‐terminal domain of the α‐subunit in EcPheRS forms compact triple helix domain. This observation is contradictory to the structure of the apo form of TtPheRS, where N‐terminal domain was not detected in the electron density map. Comparison of EcPheRS structure with TtPheRS has uncovered significant rearrangements of the structural domains involved in tRNAPhe binding/translocation. As it follows from modeling experiments, to achieve a tighter fit with anticodon loop of tRNA, a shift of ~5 Å is required for C‐terminal domain B8, and of ~6 to 7 Å for the whole N terminus. EcPheRSs have emerged as an important target for the incorporation of novel amino acids into genetic code. Further progress in design of novel compounds is anticipated based on the structural data of EcPheRS.  相似文献   
60.
The cholinergic control over inflammatory reactions calls for deciphering the corresponding protein partners. An example is blood–nerve barrier disruption allowing penetration of inflammatory factors, which is notably involved in various neuropathies due to yet unknown molecular mechanism(s). In rats, lipopolysaccharide (LPS) administration followed by intra-neural (i.n.) saline injection inducing a focal blood–nerve disruption leads to systemic inflammatory reaction accompanied by transient conduction impairment in the sciatic nerve. Here, we provide evidence compatible with the hypothesis that ARP, the naturally cleavable C-terminal peptide of the stress-induced “readthrough” acetylcholinesterase variant (AChE-R), is causally involved in the emergence of this LPS-induced conduction impairment. Intra-neural injection to naïve rats of conditioned medium from cultured splenocytes exposed to LPS in vitro (reactive splenocyte medium) induced a transient conduction impairment that was accompanied by facilitated accumulation of cleaved intra-neural ARP. Protein kinase C (PKC) βII, known to interact with ARP, was significantly elevated in the LPS-exposed sciatic nerve preparations. Moreover, direct i.n. injection of synthetic ARP30, bearing the mouse AChE-R C-terminal sequence, similarly induced PKCβII expression and conduction impairment. The induction of neural conduction impairment by ARP, possibly through its interaction with PKCβII, suggests a role for AChE-R expression in inflammation-associated neuropathies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号