首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   17篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   14篇
  2013年   10篇
  2012年   14篇
  2011年   20篇
  2010年   2篇
  2009年   6篇
  2008年   7篇
  2007年   7篇
  2006年   13篇
  2005年   8篇
  2004年   9篇
  2003年   8篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1990年   1篇
  1989年   1篇
  1984年   1篇
排序方式: 共有157条查询结果,搜索用时 46 毫秒
11.
12.
Nervous necrosis virus (NNV) is a member of the Betanodavirus genus that causes fatal diseases in over 40 species of fish worldwide. Mortality among NNV-infected fish larvae is almost 100%. In order to elucidate the mechanisms responsible for the susceptibility of fish larvae to NNV, we exposed zebrafish larvae to NNV by bath immersion at 2, 4, 6, and 8 days postfertilization (dpf). Here, we demonstrate that developing zebrafish embryos are resistant to NNV at 2 dpf due to the protection afforded by the egg chorion and, to a lesser extent, by the perivitelline fluid. The zebrafish larvae succumbed to NNV infection during a narrow time window around the 4th dpf, while 6- and 8-day-old larvae were much less sensitive, with mortalities of 24% and 28%, respectively.  相似文献   
13.
Many eukaryotic cells are able to crawl on surfaces and guide their motility based on environmental cues. These cues are interpreted by signaling systems which couple to cell mechanics; indeed membrane protrusions in crawling cells are often accompanied by activated membrane patches, which are localized areas of increased concentration of one or more signaling components. To determine how these patches are related to cell motion, we examine the spatial localization of RasGTP in chemotaxing Dictyostelium discoideum cells under conditions where the vertical extent of the cell was restricted. Quantitative analyses of the data reveal a high degree of spatial correlation between patches of activated Ras and membrane protrusions. Based on these findings, we formulate a model for amoeboid cell motion that consists of two coupled modules. The first module utilizes a recently developed two-component reaction diffusion model that generates transient and localized areas of elevated concentration of one of the components along the membrane. The activated patches determine the location of membrane protrusions (and overall cell motion) that are computed in the second module, which also takes into account the cortical tension and the availability of protrusion resources. We show that our model is able to produce realistic amoeboid-like motion and that our numerical results are consistent with experimentally observed pseudopod dynamics. Specifically, we show that the commonly observed splitting of pseudopods can result directly from the dynamics of the signaling patches.  相似文献   
14.
The last 3 rounds (3-5) of CAPRI included a wide range of docking targets. Several targets were especially challenging, since they involved large-scale movements and symmetric rearrangement, while others were based on homology models. We have approached the targets with a variety of geometry-based docking algorithms that include rigid docking, symmetric docking, and flexible docking with symmetry constraints. For all but 1 docking target, we were able to submit at least 1 acceptable quality prediction. Here, we detail for each target the prediction methods used and the specific biological data employed, and supply a retrospective analysis of the results. We highlight the advantages of our techniques, which efficiently exploit the geometric shape complementarity properties of the interaction. These enable them to run only few minutes on a standard PC even for flexible docking, thus proving their scalability toward computational genomic scale experiments. We also outline the major required enhancements, such as the introduction of side-chain position refinement and the introduction of flexibility for both docking partners.  相似文献   
15.
Delta-catenin belongs to the p120-catenin (p120(ctn)) protein family, which is characterized by ten, characteristically spaced Armadillo repeats that bind to the juxtamembrane segment of the classical cadherins. Delta-catenin is the only member of this family that is expressed specifically in neurons, where it binds to PDZ domain proteins in the post-synaptic compartment. As a component of both adherens and synaptic junctions, delta-catenin can link the adherens junction to the synapse and, thereby, coordinate synaptic input with changes in the adherens junction. By virtue of its restriction to the post-synaptic area, delta-catenin creates an asymmetric adherens junction in the region of the synapse. The crucial nature of the specialized function of delta-catenin in neurons is demonstrated by a targeted gene mutation, which causes deficits in learning and in synaptic plasticity. Taken together, recent evidence indicates that delta-catenin is a sensor of synaptic activity and implements activity-related morphological changes at the synapse.  相似文献   
16.
17.
Riven I  Iwanir S  Reuveny E 《Neuron》2006,51(5):561-573
G protein-coupled signaling is one of the major mechanisms for controlling cellular excitability. One of the main targets for this control at postsynaptic membranes is the G protein-coupled potassium channels (GIRK/Kir3), which generate slow inhibitory postsynaptic potentials following the activation of Pertussis toxin-sensitive G protein-coupled receptors. Using total internal reflection fluorescence (TIRF) microscopy combined with fluorescence resonance energy transfer (FRET), in intact cells, we provide evidence for the existence of a trimeric G protein-channel complex at rest. We show that activation of the channel via the receptor induces a local conformational switch of the G protein to induce channel opening. The presence of such a complex thus provides the means for a precise temporal and highly selective activation of the channel, which is required for fine tuning of neuronal excitability.  相似文献   
18.
19.
Zinc is an essential mineral, and infants are particularly vulnerable to zinc deficiency as they require large amounts of zinc for their normal growth and development. We have recently described the first loss-of-function mutation (H54R) in the zinc transporter ZnT-2 (SLC30A2) in mothers with infants harboring transient neonatal zinc deficiency (TNZD). Here we identified and characterized a novel heterozygous G87R ZnT-2 mutation in two unrelated Ashkenazi Jewish mothers with infants displaying TNZD. Transient transfection of G87R ZnT-2 resulted in endoplasmic reticulum-Golgi retention, whereas the WT transporter properly localized to intracellular secretory vesicles in HC11 and MCF-7 cells. Consequently, G87R ZnT-2 showed decreased stability compared with WT ZnT-2 as revealed by Western blot analysis. Three-dimensional homology modeling based on the crystal structure of YiiP, a close zinc transporter homologue from Escherichia coli, revealed that the basic arginine residue of the mutant G87R points toward the membrane lipid core, suggesting misfolding and possible loss-of-function. Indeed, functional assays including vesicular zinc accumulation, zinc secretion, and cytoplasmic zinc pool assessment revealed markedly impaired zinc transport in G87R ZnT-2 transfectants. Moreover, co-transfection experiments with both mutant and WT transporters revealed a dominant negative effect of G87R ZnT-2 over the WT ZnT-2; this was associated with mislocalization, decreased stability, and loss of zinc transport activity of the WT ZnT-2 due to homodimerization observed upon immunoprecipitation experiments. These findings establish that inactivating ZnT-2 mutations are an underlying basis of TNZD and provide the first evidence for the dominant inheritance of heterozygous ZnT-2 mutations via negative dominance due to homodimer formation.  相似文献   
20.
Deletion of Phe-508 (F508del) in the first nucleotide binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) leads to defects in folding and channel gating. NMR data on human F508del NBD1 indicate that an H620Q mutant, shown to increase channel open probability, and the dual corrector/potentiator CFFT-001 similarly disrupt interactions between β-strands S3, S9, and S10 and the C-terminal helices H8 and H9, shifting a preexisting conformational equilibrium from helix to coil. CFFT-001 appears to interact with β-strands S3/S9/S10, consistent with docking simulations. Decreases in T(m) from differential scanning calorimetry with H620Q or CFFT-001 suggest direct compound binding to a less thermostable state of NBD1. We hypothesize that, in full-length CFTR, shifting the conformational equilibrium to reduce H8/H9 interactions with the uniquely conserved strands S9/S10 facilitates release of the regulatory region from the NBD dimerization interface to promote dimerization and thereby increase channel open probability. These studies enabled by our NMR assignments for F508del NBD1 provide a window into the conformational fluctuations within CFTR that may regulate function and contribute to folding energetics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号