首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   971篇
  免费   126篇
  1097篇
  2023年   8篇
  2022年   19篇
  2021年   27篇
  2020年   7篇
  2019年   14篇
  2018年   23篇
  2017年   18篇
  2016年   34篇
  2015年   41篇
  2014年   42篇
  2013年   50篇
  2012年   76篇
  2011年   81篇
  2010年   52篇
  2009年   39篇
  2008年   48篇
  2007年   47篇
  2006年   50篇
  2005年   45篇
  2004年   30篇
  2003年   33篇
  2002年   25篇
  2001年   15篇
  2000年   23篇
  1999年   15篇
  1998年   6篇
  1997年   8篇
  1996年   9篇
  1995年   7篇
  1994年   9篇
  1993年   5篇
  1992年   11篇
  1991年   14篇
  1990年   15篇
  1989年   11篇
  1988年   13篇
  1987年   11篇
  1986年   16篇
  1985年   10篇
  1984年   14篇
  1982年   6篇
  1981年   6篇
  1979年   5篇
  1977年   4篇
  1976年   4篇
  1971年   5篇
  1969年   4篇
  1968年   7篇
  1967年   4篇
  1937年   5篇
排序方式: 共有1097条查询结果,搜索用时 0 毫秒
181.
A better understanding of the origin and natural reservoirs of resistance determinants is fundamental to efficiently tackle antibiotic resistance. This paper reports the identification of a novel 5.8 kb erythromycin resistance plasmid, from Bacillus sp. HS24 isolated from the marine sponge Haliclona simulans. pBHS24B has a mosaic structure and carries the erythromycin resistance gene erm(T). This is the first report of an erythromycin resistance plasmid from a sponge associated bacteria and of the Erm(T) determinant in the genus Bacillus.  相似文献   
182.
Functional gene clusters, containing two or more genes encoding different enzymes for the same pathway, are sometimes observed in plant genomes, most often when the genes specify the synthesis of specialized defensive metabolites. Here, we show that a cluster of genes in tomato (Solanum lycopersicum; Solanaceae) contains genes for terpene synthases (TPSs) that specify the synthesis of monoterpenes and diterpenes from cis-prenyl diphosphates, substrates that are synthesized by enzymes encoded by cis-prenyl transferase (CPT) genes also located within the same cluster. The monoterpene synthase genes in the cluster likely evolved from a diterpene synthase gene in the cluster by duplication and divergence. In the orthologous cluster in Solanum habrochaites, a new sesquiterpene synthase gene was created by a duplication event of a monoterpene synthase followed by a localized gene conversion event directed by a diterpene synthase gene. The TPS genes in the Solanum cluster encoding cis-prenyl diphosphate–utilizing enzymes are closely related to a tobacco (Nicotiana tabacum; Solanaceae) diterpene synthase encoding Z-abienol synthase (Nt-ABS). Nt-ABS uses the substrate copal-8-ol diphosphate, which is made from the all-trans geranylgeranyl diphosphate by copal-8-ol diphosphate synthase (Nt-CPS2). The Solanum gene cluster also contains an ortholog of Nt-CPS2, but it appears to encode a nonfunctional protein. Thus, the Solanum functional gene cluster evolved by duplication and divergence of TPS genes, together with alterations in substrate specificity to utilize cis-prenyl diphosphates and through the acquisition of CPT genes.  相似文献   
183.
184.
Tert-butylhydroperoxide (tBHP) challenge caused an initial depletion of cellular reduced glutathione (GSH), which was followed by a gradual restoration of cellular GSH in AML12, H9c2, and differentiated PC12 cells. The time-dependent changes in cellular GSH induced by tBHP were monitored as a measure of GSH recovery capacity (GRC), of which glutathione reductase (GR)-mediated glutathione redox cycling and γ-glutamate cysteine ligase (GCL)-mediated GSH synthesis were found to play an essential role. While glutathione redox cycling sustained the GSH level during the initial tBHP-induced depletion, GSH synthesis restores the GSH level thereafter. The effects of (-)schisandrin B [(-)Sch B] and its analogs (Sch A and Sch C) on GRC were also examined in the cells. (-)Sch B and Sch C, but not Sch A, ameliorated the extent of tBHP-induced GSH depletion, indicative of enhanced glutathione redox cycling. However, the degree of restoration of GSH post-tBHP challenge was not affected or even decreased. Pretreatment with (-)Sch B and Sch C, but not Sch A, protected against oxidant injury in the cells. The (-)Sch B afforded cytoprotection was abolished by N,N'-bis(chloroethyl)-N-nitrosourea pretreatment suggesting the enhancement of glutathione redox cycling is crucially involved in the cytoprotection afforded by (-)Sch B against oxidative stress-induced cell injury.  相似文献   
185.
186.
In a search for potential ethanologens, waste compost was screened for ethanol-tolerant thermophilic microorganisms. Two thermophilic bacterial strains, M5EXG and M10EXG, with tolerance of 5 and 10% (v/v) ethanol, respectively, were isolated. Both isolates are facultative anaerobic, non-spore forming, non-motile, catalase-positive, oxidase-negative, Gram-negative rods that are capable of utilizing a range of carbon sources including arabinose, galactose, mannose, glucose and xylose and produce low amounts of ethanol, acetate and lactate. Growth of both isolates was observed in fully defined minimal media within the temperature range 50–80°C and pH 6.0–8.0. Phylogenetic analysis of the 16S rDNA sequences revealed that both isolates clustered with members of subgroup 5 of the genus Bacillus. G+C contents and DNA–DNA relatedness of M5EXG and M10EXG revealed that they are strains belonging to Geobacillus thermoglucosidasius. However, physiological and biochemical differences were evident when isolates M5EXG and M10EXG were compared with G. thermoglucosidasius type strain (DSM 2542T). The new thermophilic, ethanol-tolerant strains of G. thermoglucosidasius may be candidates for ethanol production at elevated temperatures.  相似文献   
187.
188.
189.
Tremendous research efforts are devoted to developing wide potential window aqueous supercapacitors to resolve their low energy density concern. While the operational potential window is dictated by the intrinsic electrochemical stability of water (1.23 V), such a bottleneck may be surpassed by leveraging the additional overpotential of the oxygen evolution reaction and the hydrogen evolution reaction (HER). Herein, by employing an electroreduction technique, Na+ is adsorbed onto the carbon negative electrode which effectively acts as a physical barrier to hinder intermediate HER product formation, thereby reducing HER activity. To complement the wide potential carbon electrode, Na0.25MnO2 is employed as the positive electrode to take advantage of the extra energy (i.e., increased overpotential) required for Na+ insertion process into the structure. The asymmetric supercapacitor exhibits high energy density of 61.1 W h kg?1 at a power density of 982 W kg?1, and even at an ultrahigh power density of 42.9 kW kg?1, a respectable energy density of 16.3 W h kg?1 is attained. In addition, 93.7% capacitance retention is recorded after cycling for 10 000 cycles which further demonstrates its suitability as supercapacitor. The present success in fabricating a 2.7 V asymmetric supercapacitor will open a promising research route toward achieving high energy density and high power density.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号