首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   5篇
  2022年   3篇
  2021年   2篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   12篇
  2011年   6篇
  2010年   3篇
  2009年   2篇
  2008年   8篇
  2007年   11篇
  2006年   9篇
  2005年   6篇
  2004年   9篇
  2003年   5篇
  2002年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
  1965年   2篇
  1964年   1篇
  1962年   2篇
  1959年   1篇
  1958年   3篇
  1957年   1篇
  1955年   3篇
  1946年   1篇
  1937年   1篇
排序方式: 共有111条查询结果,搜索用时 31 毫秒
31.
32.
33.
34.
35.
Highlights? E. histolytica expresses a convergently evolved RGS-RhoGEF protein ? EhRGS-RhoGEF possesses a conventional nine-helix RGS domain ? Activated EhRGS-RhoGEF induces S2 cell spreading through Rac1/2 ? EhRGS-RhoGEF modulates amoebic migration and host cell killing  相似文献   
36.
Tp0655 of Treponema pallidum, the causative agent of syphilis, is predicted to be a 40 kDa membrane lipoprotein. Previous sequence analysis of Tp0655 noted its homology to polyamine-binding proteins of the bacterial PotD family, which serve as periplasmic ligand-binding proteins of ATP-binding-cassette (ABC) transport systems. Here, the 1.8 A crystal structure of Tp0655 demonstrated structural homology to Escherichia coli PotD and PotF. The latter two proteins preferentially bind spermidine and putrescine, respectively. All of these proteins contain two domains that sandwich the ligand between them. The ligand-binding site of Tp0655 can be occupied by 2-(N-morpholino)ethanesulfanoic acid, a component of the crystallization medium. To discern the polyamine binding preferences of Tp0655, the protein was subjected to isothermal titration calorimetric experiments. The titrations established that Tp0655 binds polyamines avidly, with a marked preference for putrescine (Kd=10 nM) over spermidine (Kd=430 nM), but the related compounds cadaverine and spermine did not bind. Structural comparisons and structure-based sequence analyses provide insights into how polyamine-binding proteins recognize their ligands. In particular, these comparisons allow the derivation of rules that may be used to predict the function of other members of the PotD family. The sequential, structural, and functional homology of Tp0655 to PotD and PotF prompt the conclusion that the former likely is the polyamine-binding component of an ABC-type polyamine transport system in T. pallidum. We thus rename Tp0655 as TpPotD. The ramifications of TpPotD as a polyamine-binding protein to the parasitic strategy of T. pallidum are discussed.  相似文献   
37.
The Tp34 (TP0971) membrane lipoprotein of Treponema pallidum, an obligate human pathogen and the agent of syphilis, was previously reported to have lactoferrin binding properties. Given the non-cultivatable nature of T. pallidum, a structure-to-function approach was pursued to clarify further potential relationships between the Tp34 structural and biochemical properties and its propensity to bind human lactoferrin. The crystal structure of a nonacylated, recombinant form of Tp34 (rTp34), solved to a resolution of 1.9A(,) revealed two metaloccupied binding sites within a dimer; the identity of the ion most likely was zinc. Residues from both of the monomers contributed to the interfacial metal-binding sites; a novel feature was that the delta-sulfur of methionine coordinated the zinc ion. Analytical ultracentrifugation showed that, in solution, rTp34 formed a metal-stabilized dimer and that rTp34 bound human lactoferrin with a stoichiometry of 2:1. Isothermal titration calorimetry further revealed that rTp34 bound human lactoferrin at high (submicromolar) affinity. Finally, membrane topology studies revealed that native Tp34 is not located on the outer surface (outer membrane) of T. pallidum but, rather, is periplasmic. How propensity of Tp34 to bind zinc and the iron-sequestering lactoferrin may relate overall to the biology of T. pallidum infection in humans is discussed.  相似文献   
38.
RIM proteins play critical roles in synaptic vesicle priming and diverse forms of presynaptic plasticity. The C-terminal C2B domain is the only module that is common to all RIMs but is only distantly related to well-studied C2 domains, and its three-dimensional structure and interactions have not been characterized in detail. Using NMR spectroscopy, we now show that N- and C-terminal extensions beyond the predicted C2B domain core sequence are necessary to form a folded, stable RIM1alpha C2B domain. We also find that the isolated RIM1alpha C2B domain is not sufficient for previously described protein-protein interactions involving the RIM1alpha C-terminus, suggesting that additional sequences adjacent to the C2B domain might be required for these interactions. However, analytical ultracentrifugation shows that the RIM1alpha C2B domain forms weak dimers in solution. The crystal structure of the RIM1alpha C2B domain dimer at 1.7 A resolution reveals that it forms a beta-sandwich characteristic of C2 domains and that the unique N- and C-terminal extensions form a small subdomain that packs against the beta-sandwich and mediates dimerization. Our results provide a structural basis to understand the function of RIM C2B domains and suggest that dimerization may be a crucial aspect of RIM function.  相似文献   
39.
40.
P450BM-3 is an extensively studied P450 cytochrome that is naturally fused to a cytochrome P450 reductase domain. Crystal structures of the heme domain of this enzyme have previously generated many insights into features of P450 structure, substrate binding specificity, and conformational changes that occur on substrate binding. Although many P450s are inhibited by imidazole, this compound does not effectively inhibit P450BM-3. Omega-imidazolyl fatty acids have previously been found to be weak inhibitors of the enzyme and show some unusual cooperativity with the substrate lauric acid. We set out to improve the properties of these inhibitors by attaching the omega-imidazolyl fatty acid to the nitrogen of an amino acid group, a tactic that we used previously to increase the potency of substrates. The resulting inhibitors were significantly more potent than their parent compounds lacking the amino acid group. A crystal structure of one of the new inhibitors bound to the heme domain of P450BM-3 reveals that the mode of interaction of the amino acid group with the enzyme is different from that previously observed for acyl amino acid substrates. Further, required movements of residues in the active site to accommodate the imidazole group provide an explanation for the low affinity of imidazole itself. Finally, the previously observed cooperativity with lauric acid is explained by a surprisingly open substrate-access channel lined with hydrophobic residues that could potentially accommodate lauric acid in addition to the inhibitor itself.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号