首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   573篇
  免费   36篇
  609篇
  2022年   5篇
  2021年   9篇
  2020年   6篇
  2019年   8篇
  2018年   13篇
  2017年   13篇
  2016年   13篇
  2015年   23篇
  2014年   26篇
  2013年   36篇
  2012年   32篇
  2011年   34篇
  2010年   22篇
  2009年   18篇
  2008年   31篇
  2007年   22篇
  2006年   21篇
  2005年   19篇
  2004年   18篇
  2003年   12篇
  2002年   16篇
  2001年   19篇
  2000年   9篇
  1999年   10篇
  1998年   5篇
  1994年   4篇
  1993年   4篇
  1992年   6篇
  1991年   8篇
  1990年   6篇
  1989年   6篇
  1988年   7篇
  1987年   4篇
  1986年   11篇
  1985年   16篇
  1984年   7篇
  1983年   7篇
  1982年   8篇
  1981年   3篇
  1980年   6篇
  1979年   6篇
  1978年   3篇
  1977年   5篇
  1976年   7篇
  1975年   3篇
  1970年   5篇
  1969年   9篇
  1968年   5篇
  1967年   6篇
  1965年   2篇
排序方式: 共有609条查询结果,搜索用时 15 毫秒
101.
102.
BACKGROUND: Cell cycle progression requires the activity of protein kinases and phosphatases at critical points in the cell cycle in all eukaryotes. We have previously reported that the dis2(+) and sds2(+) genes of fission yeast encode redundant catalytic subunits of a type 1-like protein phosphatase. The sds22(+) gene was shown to be essential for cell viability and to interact genetically with dis2(+) and sds21(+). RESULTS: Here we show by immunoprecipitation that the sds22 protein physically interacts with the dis2 and sds21 proteins, and that sds22-associated phosphatase activity has altered substrate specificity, The loss of sds22 function by a temperature sensitive mutation leads to cell cycle arrest at mid-mitosis, at which point cdc2-dependent histone Hl kinase activity is high while sds22-dependent H1 phosphatase activity is low. To examine the unusual properties of sds22 protein structure, we analyzed a collection of sds22 deletion and point mutants by a variety of functional criteria. CONCLUSION: We propose that sds22 is a regulatory subunit of the dis2/sds21 phosphatase catalytic subunits and that sds22-bound phosphatase carries a key phosphatase activity essential for the progression from metaphase to anaphase. Mutational analysis indicates that dis2/sds21 interacts with the central repetitive domain of sds22, while the C-terminal and central regions of sds22 may be involved in subcellular targeting and the N-terminus is important for stability.  相似文献   
103.
Glutamate receptor (GluR) δ1 is widely expressed in the developing forebrain, whereas GluRδ2 is selectively expressed in cerebellar Purkinje cells. Recently, we found that trans-synaptic interaction of postsynaptic GluRδ2 and pre-synaptic neurexins (NRXNs) through cerebellin precursor protein (Cbln) 1 mediates excitatory synapse formation in the cerebellum. Thus, a question arises whether GluRδ1 regulates synapse formation in the forebrain. In this study, we showed that the N-terminal domain of GluRδ1 induced inhibitory presynaptic differentiation of some populations of cultured cortical neurons. When Cbln1 or Cbln2 was added to cultures, GluRδ1 expressed in HEK293T cells induced preferentially inhibitory presynaptic differentiation of cultured cortical neurons. The synaptogenic activity of GluRδ1 was suppressed by the addition of the extracellular domain of NRXN1α or NRXN1β containing splice segment 4. Cbln subtypes directly bound to the N-terminal domain of GluRδ1. The synaptogenic activity of GluRδ1 in the presence of Cbln subtypes correlated well with their binding affinities. When transfected to cortical neurons, GluRδ1 stimulated inhibitory synapse formation in the presence of Cbln1 or Cbln2. These results together with differential interactions of Cbln subtypes with NRXN variants suggest that GluRδ1 induces preferentially inhibitory presynaptic differentiation of cortical neurons by interacting with NRXNs containing splice segment 4 through Cbln subtypes.  相似文献   
104.
N Misawa  S Yamano    H Ikenaga 《Applied microbiology》1991,57(6):1847-1849
The Erwinia uredovora crtB, crtE, crtI, and crtY genes required for beta-carotene biosynthesis were introduced by conjugal transfer into an ethanol-producing bacterium, Zymomonas mobilis, and a phytopathogenic bacterium, Agrobacterium tumefaciens, in which no carotenoid is synthesized. The transconjugants of Z. mobilis and A. tumefaciens carrying these genes appeared as yellow colonies and produced 220 and 350 micrograms of beta-carotene per g of dry weight, respectively, in the stationary phase in liquid culture.  相似文献   
105.
106.
The aims of this investigation were 1) to determine whether endurance exercise training could reverse impairments in insulin-stimulated compartmentalization and/or activation of aPKCzeta/lambda and Akt2 in skeletal muscle from high-fat-fed rodents and 2) to assess whether the PPARgamma agonist rosiglitazone could reverse impairments in skeletal muscle insulin signaling typically observed after high-fat feeding. Sprague-Dawley rats were placed on chow (NORCON, n = 16) or high-fat (n = 64) diets for 4 wk. During a subsequent 4-wk experimental period, high-fat-fed rats were allocated (n = 16/group) to either sedentary control (HFC), exercise training (HFX), rosiglitazone treatment (HFRSG), or a combination of both exercise training and rosiglitazone (HFRX). Following the 4-wk experimental period, animals underwent hindlimb perfusions. Insulin-stimulated plasma membrane-associated aPKCzeta and -lambda protein concentration, aPKCzeta/lambda activity, GLUT4 protein concentration, cytosolic Akt2, and aPKCzeta/lambda activities were reduced (P < 0.05) in HFC compared with NORCON. Cytosolic Akt2, aPKCzeta, and aPKClambda protein concentrations were not affected in HFC compared with NORCON. Exercise training reversed the deleterious effects of the high-fat diet such that insulin-stimulated compartmentalization and activation of components of the insulin-signaling cascade in HFX were normalized to NORCON. High-fat diet-induced impairments to skeletal muscle glucose metabolism were not reversed by rosiglitazone administration, nor did rosiglitazone augment the effect of exercise. Our findings indicate that chronic exercise training, but not rosiglitazone, reverses high-fat diet induced impairments in compartmentalization and activation of components of the insulin-signaling cascade in skeletal muscle.  相似文献   
107.

Background and Aim

Chronic hepatic damage leads to liver fibrosis, which is characterized by the accumulation of collagen-rich extracellular matrix. However, the mechanism by which E3 ubiquitin ligase is involved in collagen synthesis in liver fibrosis is incompletely understood. This study aimed to explore the involvement of the E3 ubiquitin ligase synoviolin (Syno) in liver fibrosis.

Methods

The expression and localization of synoviolin in the liver were analyzed in CCl4-induced hepatic injury models and human cirrhosis tissues. The degree of liver fibrosis and the number of activated hepatic stellate cells (HSCs) was compared between wild type (wt) and Syno+/− mice in the chronic hepatic injury model. We compared the ratio of apoptosis in activated HSCs between wt and Syno+/− mice. We also analyzed the effect of synoviolin on collagen synthesis in the cell line from HSCs (LX-2) using siRNA-synoviolin and a mutant synoviolin in which E3 ligase activity was abolished. Furthermore, we compared collagen synthesis between wt and Syno−/− mice embryonic fibroblasts (MEF) using quantitative RT-PCR, western blotting, and collagen assay; then, we immunohistochemically analyzed the localization of collagen in Syno−/− MEF cells.

Results

In the hepatic injury model as well as in cirrhosis, synoviolin was upregulated in the activated HSCs, while Syno+/− mice developed significantly less liver fibrosis than in wt mice. The number of activated HSCs was decreased in Syno+/− mice, and some of these cells showed apoptosis. Furthermore, collagen expression in LX-2 cells was upregulated by synoviolin overexpression, while synoviolin knockdown led to reduced collagen expression. Moreover, in Syno−/− MEF cells, the amounts of intracellular and secreted mature collagen were significantly decreased, and procollagen was abnormally accumulated in the endoplasmic reticulum.

Conclusion

Our findings demonstrate the importance of the E3 ubiquitin ligase synoviolin in liver fibrosis.  相似文献   
108.
H Yamano  J Gannon    T Hunt 《The EMBO journal》1996,15(19):5268-5279
A cell-free system derived from Xenopus eggs was used to identify the 'destruction box' of the Schizosaccharomyces pombe B-type cyclin, Cdc13, as residues 59-67: RHALDDVSN. Expression of indestructible Cdc13 from a regulated promoter in S.pombe blocked cells in anaphase and inhibited septation, showing that destruction of Cdc13 is necessary for exit from mitosis, but not for sister chromatid separation. In contrast, strong expression of a polypeptide comprising the N-terminal 70 residues of Cdc13, which acts as a competitive inhibitor of destruction box-mediated proteolysis, inhibited both sister chromatid separation and the destruction of Cdc13, whereas an equivalent construct with a mutated destruction box did not. Appropriately timed expression of this N-terminal fragment of Cdc13 overcame the G1 arrest seen in cdc10 mutant strains, suggesting that proteins required for the initiation of S phase are subject to destruction by the same proteolytic machinery as cyclin.  相似文献   
109.
Interspecific variation in diel-scale temporal niches is common in natural communities. Such variation changes population dynamics via effects on the growth and reproduction of individuals. Also at the community level, theory predicts that animals can reduce competition for shared resources by changing diel activity in certain situations. However, the role of diel activity at the community-level has not been examined sufficiently. In this study, to examine whether the diel-scale temporal niche act as a competition-mitigating mechanism for stream fishes at the community level, we surveyed diel changes in microhabitat use and foraging, and the pattern of interspecific diet overlap in the middle reaches of a temperate stream where various fish species that seemed to be either nocturnal or diurnal coexisted. Our results suggest that the fishes forage during both daytime and night, but change their foraging mode at different times of the day, so that the foraging habits of these fish species cannot be divided simply into nocturnal and diurnal. Furthermore, fishes appeared to aggregate in the vicinity of common food resources during time zones with high availability of the resources, and therefore, inter-guild diet overlap was high during certain time zones. On the other hand, when inter-guild diet overlap was low, each fish species used foods or microhabitats that did not any have the potential to be used by species of another guild. Therefore, we conclude that variation in diel niche use is influenced by variation in the fundamental niche and food supply or availability rather than by competitive interaction between fishes in the stream fish community.  相似文献   
110.
Consomic strains, in which one chromosome is derived from a donor strain and the other chromosomes are derived from the recipient strain, provide a powerful tool for the dissection of complex genetic traits. In this study we established ten consomic strains (A-2SM, A-6SM, A-11SM, A-12SM, A-13SM, A-15SM, A-17SM, A-18SM, A-19SM, A-YSM) using the SM/J strain as the donor and the A/J strain as the recipient; these are the parental strains of a set of SMXA recombinant inbred (RI) strains that we had developed previously. We analyzed body weights and blood lipid levels in the consomic and parental strains. The mean values for each trait showed a continuous range of variation in the consomic strains suggesting that they are controlled by multiple genes. We previously identified suggestive QTLs for body weight on chromosome 6 in SMXA RI strains and (SM/J?×?A/J)F2 mice. The observation that the A-6SM consomic strain had a significantly lower mean body weight than the A/J strain supports the presence of this QTL on chromosome 6. Similarly, the higher blood triglyceride level in the A-11SM strain shows the existence of a previously mapped QTL on chromosome 11, and the A-12SM strain provides evidence of a QTL for blood total cholesterol level on chromosome 12. These consomic strains, along with the previously developed set of SMXA RI strains from A/J and SM/J mice, offer an invaluable and powerful resource for the analysis of complex genetic traits in mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号