首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   550篇
  免费   25篇
  2022年   2篇
  2021年   7篇
  2020年   6篇
  2019年   5篇
  2018年   3篇
  2017年   6篇
  2016年   10篇
  2015年   16篇
  2014年   27篇
  2013年   35篇
  2012年   38篇
  2011年   46篇
  2010年   25篇
  2009年   17篇
  2008年   33篇
  2007年   31篇
  2006年   17篇
  2005年   30篇
  2004年   24篇
  2003年   30篇
  2002年   27篇
  2001年   11篇
  2000年   9篇
  1999年   12篇
  1998年   9篇
  1997年   8篇
  1996年   9篇
  1995年   15篇
  1994年   14篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
  1975年   1篇
  1973年   2篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1958年   1篇
排序方式: 共有575条查询结果,搜索用时 328 毫秒
41.
Laboratory adapted and vaccine strains of measles virus (MV) induced type I IFN in infected cells. The wild-type strains in contrast induced it to a far lesser extent. We have investigated the mechanism for this differential type I IFN induction in monocyte-derived dendritic cells infected with representative MV strains. Laboratory adapted strains Nagahata and Edmonston infected monocyte-derived dendritic cells and activated IRF-3 followed by IFN-beta production, while wild-type MS failed to activate IRF-3. The viral IRF-3 activation is induced within 2 h, an early response occurring before protein synthesis. Receptor usage of CD46 or CD150 and nucleocapsid (N) protein variations barely affected the strain-to-strain difference in IFN-inducing abilities. Strikingly, most of the IFN-inducing strains possessed defective interference (DI) RNAs of varying sizes. In addition, an artificially produced DI RNA consisting of stem (the leader and trailer of MV) and loop (the GFP sequence) exhibited potential IFN-inducing ability. In this case, however, cytoplasmic introduction was needed for DI RNA to induce type I IFN in target cells. By gene-silencing analysis, DI RNA activated the RIG-I/MDA5-mitochondria antiviral signaling pathway, but not the TLR3-TICAM-1 pathway. DI RNA-containing strains induced IFN-beta mRNA within 2 h while the same recombinant strains with no DI RNA required >12 h postinfection to attain similar levels of IFN-beta mRNA. Thus, the stem-loop structure, rather than full genome replication or specific internal sequences of the MV genome, is required for an early phase of type I IFN induction by MV in host cells.  相似文献   
42.
Osteoprotegerin (OPG) is a decoy receptor for receptor activator of NF-kappaB ligand (RANKL). We previously reported that OPG deficiency elevated the circulating level of RANKL in mice. Using OPG(-/-) mice, we investigated whether OPG is involved in the shedding of RANKL by cells expressing RANKL. Osteoblasts and activated T cells in culture released a large amount of RANKL in the absence of OPG. OPG or a soluble form of receptor activator of NF-kappaB (the receptor of RANKL) suppressed the release of RANKL from those cells. OPG- and T cell-double-deficient mice showed an elevated serum RANKL level equivalent to that of OPG(-/-) mice, indicating that circulating RANKL is mainly derived from bone. The serum level of RANKL in OPG(-/-) mice was increased by ovariectomy or administration of 1alpha,25-dihydroxyvitamin D(3). Expression of RANKL mRNA in bone, but not thymus or spleen, was increased in wild-type and OPG(-/-) mice by 1alpha,25-dihydroxyvitamin D(3). These results suggest that OPG suppresses the shedding of RANKL from osteoblasts and that the serum RANKL in OPG(-/-) mice exactly reflects the state of bone resorption.  相似文献   
43.
44.
The endothelial cell-specific granule Weibel-Palade body releases vasoactive substances capable of modulating vascular inflammation. Although innate recognition of pathogens by Toll-like receptors (TLRs) is thought to play a crucial role in promotion of inflammatory responses, the molecular basis for early-phase responses of endothelial cells to bacterial pathogens has not fully been understood. We here report that human aortic endothelial cells respond to bacterial lipoteichoic acid (LTA) and synthetic bacterial lipopeptides, but not lipopolysaccharide or peptidoglycan, to induce Weibel-Palade body exocytosis, accompanied by release or externalization of the storage components von Willebrand factor and P-selectin. LTA could activate rapid Weibel-Palade body exocytosis through a TLR2- and MyD88-dependent mechanism without de novo protein synthesis. This process was at least mediated through MyD88-dependent phosphorylation and activation of phospholipase Cgamma. Moreover, LTA activated interleukin-1 receptor-associated kinase-1-dependent delayed exocytosis with de novo protein synthesis and phospholipase Cgamma-dependent activation of the NF-kappaB pathway. Increased TLR2 expression by transfection or interferon-gamma treatment increased TLR2-mediated Weibel-Palade body exocytosis, whereas reduced TLR2 expression under laminar flow decreased the response. Thus, we propose a novel role for TLR2 in induction of a primary proinflammatory event in aortic endothelial cells through Weibel-Palade body exocytosis, which may be an important step for linking innate recognition of bacterial pathogens to vascular inflammation.  相似文献   
45.
46.
47.
The phosphatidylinositol 3-kinase-Akt (PI3K-Akt) pathway and the mitogen activated protein kinase (MAPK) pathway are important in the development and proliferation of various human cancers. It has been found recently that ursolic acid treatment affects growth and apoptosis in cancer cells. We sought to determine whether prominent signaling pathways, including the PI3K-Akt pathway and the MAPK (JNK, P38, and P44/42) pathway mediate these effects. Endometrial cancer cells often have high levels of phosphorylated Akt seen in conjunction with a PTEN mutation or deletion. Elevation in Akt protects the cancer cell from apoptosis. Ursolic acid treatment moderately decreased PI3K levels in SNG-II cells. Treatment also decreased phospho-Akt and phospho-P44/42 in a dose- and time-dependent fashion, dramatically in SNG-II cells and moderately in HEC108 cells. This effect was most pronounced following treatment with 50 mum ursolic acid for 72 h. Our study found inhibition of both the PI3K-Akt pathway and the MAPK pathway in two endometrial cancer cell lines, SNG-II and the poorly differentiated HEC108 cell line.  相似文献   
48.
49.

Background

The accessory gene regulator (agr) is a quorum sensing cluster of genes which control colonization and virulence in Staphylococcus aureus. We evaluated agr function in community- (CA) and healthcare-associated (HA) MRSA, to compare the pharmacodynamics and bactericidal activity of vancomycin against agr functional and dysfunctional HA-MRSA and CA-MRSA.

Methods

40 clinical isolates of MRSA from the Canadian Nosocomial Infection Surveillance Program were evaluated for delta-haemolysin production, as a surrogate marker of agr function. Time kill experiments were performed for vancomycin at 0 to 64 times the MIC against an initial inoculum of 106 and 108 cfu/ml of agr functional and dysfunctional CA-MRSA and HA-MRSA and these data were fit to a hill-type pharmacodynamic model.

Results

15% isolates were agr dysfunctional, which was higher among HA-MRSA (26.3%) versus CA-MRSA (4.76%). Against a low initial inoculum of 106 cfu/ml of CA-MRSA, vancomycin pharmacodynamics were similar among agr functional and dysfunctional strains. However, against a high initial inoculum of 108 cfu/ml, killing activity was notably attenuated against agr dysfunctional CA-MRSA (USA400) and HA-MRSA (USA100). CA-MRSA displayed a 20.0 fold decrease in the maximal reduction in bacterial counts (Emax) which was 3.71 log10 CFU/ml for agr functional vs. 2.41 log10 CFU/ml for agr dysfunctional MRSA (p = 0.0007).

Conclusions

Dysfunction in agr was less common among CA-MRSA vs. HA-MRSA. agr dysfunction demonstrated an impact on vancomycin bactericidal activity and pharmacodynamics against a high initial inoculum of CA-MRSA and HA-MRSA, which may have implications for optimal antimicrobial therapy against persistent, difficult to treat MRSA infections.  相似文献   
50.
Mutations of two enzyme genes, HPRT1 encoding hypoxanthine guanine phosphoribosyltransferase (HPRT) and PRPS1 encoding a catalytic subunit (PRS-I) of phosphoribosylpyrophosphate synthetase, cause X-linked inborn errors of purine metabolism. Analyzing these two genes, we have identified three HPRT1 mutations in Lesch-Nyhan families following our last report. One of them, a new mutation involving the deletion of 4224 bp from intron 4 to intron 5 and the insertion of an unknown 28 bp, has been identified. This mutation resulted in an enzyme polypeptide with six amino acids deleted due to abnormal mRNA skipping exon 5. The other HPRT1 mutations, a single base deletion (548delT, 183fs189X), and a point mutation causing a splicing error (532+1G>A, 163fs165X) were detected first in Japanese patients but have been reported in European families. On the other hand, in the analysis of PRPS1, no mutation was identified in any patient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号