首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347篇
  免费   15篇
  2023年   3篇
  2022年   7篇
  2021年   5篇
  2020年   2篇
  2019年   3篇
  2018年   10篇
  2017年   7篇
  2016年   11篇
  2015年   10篇
  2014年   16篇
  2013年   30篇
  2012年   24篇
  2011年   28篇
  2010年   12篇
  2009年   10篇
  2008年   13篇
  2007年   17篇
  2006年   12篇
  2005年   24篇
  2004年   18篇
  2003年   16篇
  2002年   17篇
  2001年   10篇
  2000年   5篇
  1999年   5篇
  1998年   2篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   1篇
  1992年   6篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   6篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1932年   1篇
  1931年   1篇
排序方式: 共有362条查询结果,搜索用时 31 毫秒
71.
During early vertebrate embryogenesis, bone morphogenetic proteins (BMPs) belonging to the transforming growth factor‐β (TGF‐β) family of growth factors play a central role in dorsal–ventral (DV) patterning of embryos, while other growth factors such as Wnt and fibroblast growth factor (FGF) family members regulate formation of the anterior–posterior (AP) axis. Although the establishment of body plan is thought to require coordinated formation of the DV and AP axes, the mechanistic details underlying this coordination are not well understood. Here, we show that a Xenopus homologue of zbtb14 plays an essential role in the regulation of both DV and AP patterning during early Xenopus development. We show that overexpression of Zbtb14 promotes neural induction and inhibits epidermal differentiation, thereby regulating DV patterning. In addition, Zbtb14 promotes the formation of posterior neural tissue and suppresses anterior neural development. Consistent with this, knock‐down experiments show that Zbtb14 is required for neural development, especially for the formation of posterior neural tissues. Mechanistically, Zbtb14 reduces the levels of phosphorylated Smad1/5/8 to suppress BMP signaling and induces an accumulation of β‐Catenin to promote Wnt signaling. Collectively, these results suggest that Zbtb14 plays a crucial role in the formation of DV and AP axes by regulating both the BMP and Wnt signaling pathways during early Xenopus embryogenesis.  相似文献   
72.
The function of ubiquitous 2-Cys peroxiredoxins (Prxs) can be converted alternatively from peroxidases to molecular chaperones. This conversion has been reported to occur by the formation of high-molecular-weight (HMW) complexes upon overoxidation of or ATP/ADP binding to 2-Cys Prxs, but its mechanism is not well understood. Here, we show that upon binding to phosphatidylserine or phosphatidylglycerol dimeric human 2-Cys PrxII (hPrxII) is assembled to trefoil-shaped small oligomers (possibly hexamers) with full chaperone and null peroxidase activities. Spherical HMW complexes are formed, only when phosphatidylserine or phosphatidylglycerol is bound to overoxidized or ATP/ADP-bound hPrxII. The spherical HMW complexes are lipid vesicles covered with trefoil-shaped oligomers arranged in a hexagonal lattice pattern. Thus, these lipids with a net negative charge, which can be supplied by increased membrane trafficking under oxidative stress, are essential for the structural and functional switch of hPrxII and possibly most 2-Cys Prxs.  相似文献   
73.
A panel of microorganisms was screened for selective reduction ability towards a racemic mixture of prochiral 2-amino-3-methyl-4-ketopentanoate (rac-AMKP). Several of the microorganisms tested produced greater than 0.5 mM 4-hydroxyisoleucine (HIL) from rac-AMKP, and the stereoselectivity of HIL formation was found to depend on the taxonomic category to which the microorganism belonged. The enzymes responsible for the AMKP-reducing activity, ApAR and FsAR, were identified from two of these microorganisms, Aureobasidium pullulans NBRC 4466 and Fusarium solani TG-2, respectively. Three AMKP reducing enzymes, ApAR, FsAR, and the previously reported BtHILDH, were reacted with rac-AMKP, and each enzyme selectively produced a specific composition of HIL stereoisomers. The enzymes appeared to have different characteristics in recognition of the stereostructure of the substrate AMKP and in control of the 4-hydroxyl group configuration in the HIL product.  相似文献   
74.
This study was designed to examine whether mammosomatotroph cells (MS cells) can be easily detected using confocal laser scanning microscopy (CLSM) and whether the coexistence of growth hormone (GH) and prolactin (PRL) within the same secretory granule can be identified in the MS cell using CLSM. Conventional epoxy resin-embedded tissues of mixed GH- and PRL-secreting human pituitary adenomas were used for this double-labelling immunofluorescent study by CLSM. A semithin section of the tissue after plastic removal and bleaching was immunohistochemically double-stained with primary antibodies against GH and PRL, followed by secondary antibodies conjugated with Rhodamine (GH) and FITC (PRL). MS cells simultaneously showing fluorescence of both Rhodamine and FITC were easily detected by CLSM at lower magnification. At higher magnification, the coexistence of Rhodamine and FITC on the same secretory granule was identified by using a superimposed display. This finding was confirmed by immunoelectron microscopy. The CLSM technique may be useful for the study of MS cells.  相似文献   
75.
The immunocytochemical localization of cathepsin E, a non-lysosomal aspartic proteinase, was investigated in rat osteoclasts using the monospecific antibody to this protein. At the light-microscopic level, the preferential immunoreactivity for cathepsin E was found at high levels in active osteoclasts in the physiological bone modeling process. Neighboring osteoblastic cells were devoid of its immunoreactivity. At the electron-microscopic level, cathepsin E was exclusively confined to the apical plasma membrane at the ruffled border of active osteoclasts and the eroded bone surface. Cathepsin E was also concentrated in some endocytotic vacuoles of various sizes in the vicinity of the ruffled border membrane, some of which appeared to be secondary lysosomes containing the phagocytosed materials. These results strongly suggest that this enzyme is involved both in the extracellular degradation of the bone organic matrix and in the intracellular breakdown of the ingested substances in osteoclasts.  相似文献   
76.
77.
Music and exercise can both affect autonomic nervous system activity. However, the effects of the combination of music and exercise on autonomic activity are poorly understood. Additionally, it remains unknown whether music affects post-exercise orthostatic tolerance. The aim of this study was to evaluate the effects of music on autonomic nervous system activity in orthostatic tolerance after exercise. Twenty-six healthy graduate students participated in four sessions in a random order on four separate days: a sedentary session, a music session, a bicycling session, and a bicycling with music session. Participants were asked to listen to their favorite music and to exercise on a cycle ergometer. We evaluated autonomic nervous system activity before and after each session using frequency analysis of heart rate variability. High frequency power, an index of parasympathetic nervous system activity, was significantly increased in the music session. Heart rate was increased, and high frequency power was decreased, in the bicycling session. There was no significant difference in high frequency power before and after the bicycling with music session, although heart rate was significantly increased. Additionally, both music and exercise did not significantly affect heart rate, systolic blood pressure or also heart rate variability indices in the orthostatic test. These data suggest that music increased parasympathetic activity and attenuated the exercise-induced decrease in parasympathetic activity without altering the orthostatic tolerance after exercise. Therefore, music may be an effective approach for improving post-exercise parasympathetic reactivation, resulting in a faster recovery and a reduction in cardiac stress after exercise.  相似文献   
78.
In the series described here, 2400 patients over a 15-year period underwent surgery for correction of acquired valvular heart disease. Of these, 1586 patients had single valve replacement, 714 had double valve replacement, and 100 had triple valve replacement. Concomitant surgery for associated congenital and acquired lesions was done in 114 patients. The hospital mortality was 9.16%.  相似文献   
79.
80.
In our previous study, we serendipitously discovered that protein secretion in the methylotrophic yeast Pichia pastoris is enhanced by a mutation (V50A) in the mating factor alpha (MFα) prepro-leader signal derived from Saccharomyces cerevisiae. In the present study, we investigated 20 single-amino-acid substitutions, including V50A, located within the MFα signal peptide, indicating that V50A and several single mutations alone provided significant increase in production of the secreted proteins. In addition to hydrophobicity index analysis, both an unfolded protein response (UPR) biosensor analysis and a microscopic observation showed a clear difference on the levels of UPR induction and mis-sorting of secretory protein into vacuoles among the wild-type and mutated MFα signal peptides. This work demonstrates the importance of avoiding entry of secretory proteins into the intracellular protein degradation pathways, an observation that is expected to contribute to the engineering of strains with increased production of recombinant secreted proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号