首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   13篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   9篇
  2015年   13篇
  2014年   13篇
  2013年   10篇
  2012年   7篇
  2011年   12篇
  2010年   6篇
  2009年   9篇
  2008年   14篇
  2007年   18篇
  2006年   8篇
  2005年   12篇
  2004年   8篇
  2003年   5篇
  2002年   13篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1981年   1篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有208条查询结果,搜索用时 15 毫秒
51.
52.
The mineralocorticoid receptor (MR) is expressed in kidney and plays a central role in the control of sodium, homeostatic fluid, and blood pressure. It has also been implicated in other functions in cardiovascular system, central nervous system, and adipose tissue. This study revealed a novel role of MR in the gene regulation related to hepatic glucose production. RNAi-mediated MR silencing led to a decrease in the expression of glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase 1, the enzymes known to be involved in glucose production in liver. The MR-specific antagonists also down-regulated the expression of G6Pase, while the specific agonist enhanced G6Pase expression. These observations, for the first time, revealed a novel role for MR and its ligands in the regulation of de novo glucose synthesis in hepatocytes. It also suggests the potential of liver-specific MR modulation for the treatment of hyperglycemia.  相似文献   
53.
In vitro propagated plants of Mammillaria gracilis Pfeiff. (Cactaceae) develop calli without any exogenous growth regulators. This habituated tissue spontaneously regenerates morphologically normal as well as hyperhydric shoots. In this study, a possible involvement of activated oxygen metabolism in habituation and hyperhydricity in in vitro propagated plants of Mammillaria gracilis Pfeiff. (Cactaceae) was investigated. Significantly higher malondialdehyde (MDA) and carbonyl contents as well as hydrogen peroxide (H2O2) production were observed in habituated callus (HC), hyperhydric regenerated shoots (HS), and tumors (TT) in comparison to normal regenerated shoots (NS). Lipoxygenase (LOX) activity showed a similar trend, with a clear increase in activity in HC and HS. The activities of antioxidative enzymes, namely, peroxidase (POX), ascorbate peroxidase (APX), and catalase (CAT), were also higher in HC, HS, and TT, whereas an increase in superoxide dismutase (SOD) activity was observed in HC and HS. The majority of antioxidative isoenzymes were common to all cactus tissues, although a few tissue-specific bands were noticed. Significant decreases in phenylalanine ammonia lyase (PAL) activity, total phenolic content, and lignification were found in HS, HC, and TT in comparison to NS. Our results showed the appearance of a prominent oxidative stress in HC, HS, and TT as well as a strong induction of the antioxidant system indicating that activated oxygen metabolism could be involved in habituation and hyperhydricity and linked to the loss of tissue organization in M. gracilis. B. Balen and M. Tkalec contributed equally to this work.  相似文献   
54.
Human AlkB homologues ABH2 and ABH3 repair 1-methyladenine and 3-methylcytosine in DNA/RNA by oxidative demethylation. The enzymes have similar overall folds and active sites, but are functionally divergent. ABH2 efficiently demethylates both single- and double-stranded (ds) DNA, whereas ABH3 has a strong preference for single-stranded DNA and RNA. We find that divergent F1 β-hairpins in proximity of the active sites of ABH2 and ABH3 are central for substrate specificities. Swapping F1 hairpins between the enzymes resulted in hybrid proteins resembling the donor proteins. Surprisingly, mutation of the intercalating residue F102 had little effect on activity, while the double mutant V101A/F102A was catalytically impaired. These residues form part of an important hydrophobic network only present in ABH2. In this functionally important network, F124 stacks with the flipped out base while L157 apparently functions as a buffer stop to position the lesion in the catalytic pocket for repair. F1 in ABH3 contains charged and polar residues preventing use of dsDNA substrate. Thus, E123 in ABH3 corresponds to F102 in ABH2 and the E123F-variant gained capacity to repair dsDNA with no loss in single strand repair capacity. In conclusion, divergent sequences outside of the active site determine substrate specificities of ABH2 and ABH3.  相似文献   
55.

Background

Esophageal adenocarcinoma (EAC) is a highly aggressive disease with poor prognosis, which frequently exhibits HER-2 gene amplification. Trastuzumab, the humanized antibody against HER-2, has potent growth inhibitory effects on HER-2 overexpressing cancers. One effect of trastuzumab is that it causes HER-2 receptor internalization and degradation, enhancing presentation of HER-2 epitopes on MHC-Class I molecules. This enhances the ability of HER-2 specific cytotoxic T lymphocytes (CTLs) to recognize and kill cancer cells. Novel strategies targeting the HER-2 receptor either directly by trastuzumab and/or indirectly by inducing a CTL response against HER-2 epitopes with, for instance, DC immunotherapy and consequently combining these strategies might prove to be very effective.

Methodology/Principal Findings

In this study we report that trastuzumab has potent growth inhibitory effects on two HER-2 overexpressing EAC cell lines OE33 and OE19. However, we found that trastuzumab and HER-2 specific CTLs act synergistically in inducing tumor lysis in OE33 but not in OE19. We discovered that in OE19 this deficient response is due to a down-regulation of the Transporter Associated with Antigen Processing-2 (TAP-2). TAP-2 is an important member of the Antigen Processing Machinery (APM), and is one of the essential elements for loading antigens on MHC class I molecules. Importantly, we demonstrated that by inducing re-expression of TAP-2 in OE19 with INF-γ treatment or by incubating the cells with INF-γ producing CTLs, the specific anti HER-2 CTL tumor lysis response and synergistic effect with trastuzumab can be restored.

Conclusion

An inefficient response of HER-2 overexpressing EAC to trastuzumab and/or DC immunotherapy can be due to a down-regulated TAP-2 expression and thus a deficient APM. Future studies combining trastuzumab with IFN-γ and/or immune-therapies inducing potent anti HER-2 CTL responses could lead to an effective combinatorial strategy for successful treatment of HER-2 overexpressing but APM defective cancers.  相似文献   
56.
The cysteine-specific reagent 5,5'-dithiobis(2-nitrobenzoic acid) inactivates the Escherichia coli glycogen synthase (Holmes, E., and Preiss, J. (1982) Arch. Biochem. Biophys. 216, 736-740). To find the responsible residue, all cysteines, Cys(7), Cys(379), and Cys(408), were substituted combinatorially by Ser. 5,5'-Dithiobis(2-nitrobenzoic acid) modified and inactivated the enzyme if and only if Cys(379) was present and it was prevented by the substrate ADP-glucose (ADP-Glc). Mutations C379S and C379A increased the S(0.5) for ADP-Glc 40- and 77-fold, whereas the specific activity was decreased 5.8- and 4.3-fold, respectively. Studies of inhibition by glucose 1-phosphate and AMP indicated that Cys(379) was involved in the interaction of the enzyme with the phosphoglucose moiety of ADP-Glc. Other mutations, C379T, C379D, and C379L, indicated that this site is intolerant for bulkier side chains. Because Cys(379) is in a conserved region, other residues were scanned by mutagenesis. Replacement of Glu(377) by Ala and Gln decreased V(max) more than 10,000-fold without affecting the apparent affinity for ADP-Glc and glycogen binding. Mutation of Glu(377) by Asp decreased V(max) only 57-fold indicating that the negative charge of Glu(377) is essential for catalysis. The activity of the mutation E377C, on an enzyme form without other Cys, was chemically restored by carboxymethylation. Other conserved residues in the region, Ser(374) and Gln(383), were analyzed by mutagenesis but found not essential. Comparison with the crystal structure of other glycosyltransferases suggests that this conserved region is a loop that is part of the active site. The results of this work indicate that this region is critical for catalysis and substrate binding.  相似文献   
57.
Saprolegnia oliviae sp. nov. is described from litter (floating dead twigs, leaves and roots) in the Olivia River, Ushuaia Department, Tierra del Fuego Province (Argentina). The new species is illustrated and compared with other species of the genus. Distinguishing characteristics of S. oliviae are the production of smooth oogonia (with some lateral or terminal projections) and the absence of antheridial branches on the majority of the oogonia, but when present, they are mostly diclinous, at times oogonia are supplied with androgynous and monoclinous antheridial branches. The oogonial stalks are predominantly short and straight or long and bent, curved or many times coiled; oospores are distinctive subcentric, (1-) 15-50 (-70) per oogonium. Morphological details of the new species and its comparison with other described species are discussed here.  相似文献   
58.
BACKGROUND: Gene expression in islets of Langerhans is profoundly sensitive to glucose and other nutrients. Islets of Langerhans in the Anx7(+/-) knockout mouse exhibit a profound reduction in ITPR3 protein expression, defective intracellular calcium signaling, and defective insulin secretion. Additional data presented here also show that mRNA for ITPR3 is virtually undetectable in isolated Anx7(+/-) islets. IP3Receptor type 3 (ITPR3) expression in islets of Langerhans is closely regulated by secretory stimuli, and it has been suggested that the level of the ITPR3 expression controls the ability of the islets to respond to nutritional signals. We report that although control islets respond to glucose in vitro by a transient increment in ITPR3 mRNA, the islets from the Anx7(+/-) mouse remain low. We therefore hypothesized that the Anx7/IP3 Receptor(3)/Ca(2+) signaling pathway plays a role in beta cell responses to glucose, and that in the absence of the Anx7/ITPR3 signaling system, the islets would be unable to discriminate between fed or fasted states in vivo. MATERIALS AND METHODS: To test this hypothesis, we subjected Anx7(+/-) and control mice to either food and water ad libidum or to an overnight fast with access to water only. We then isolated the respective islets and compared nutrient-dependent changes in global gene expression under the four conditions using genome-based microarray technology. RESULTS: Anx7 protein expression in these islets is only about 50% of control levels in normal littermate controls, and IPTR3 message and protein are virtually zero. cDNA microarray analyses show that in control animals gene expression is significantly affected by the fasting state. Many of the affected genes have historical relevance to development and differentiation of islets. These include preproglucagon, APOJ, cadherin2, phosphoglucoisomerase, oncostatin M, PAX6, HGF, and cytokeratin 18. However, there are also many other nutritionally sensitive genes in control islets that are principally associated with cell division and DNA repair. The latter genes have not specifically been associated with islet physiology in the past. By contrast, Anx7(+/-) mouse islets exhibit a greatly reduced ability to discriminate genomically between fed and fasted states for all classes of identified genes. Many of the validated genes are specific to islets in comparison to liver tissue examined. Real-time quantitative RT-PCR analysis of islets from Anx7 heterozygous mice and littermate controls revealed remarkable down-regulation in PTEN, Glut-2, PDX-1, IGF-1, and Neuro D1 expression, but not in liver. CONCLUSIONS: We conclude that reduced gene dosage in the Anx7(+/-) islet, with concomitant loss of ITPR3 expression and consequent defects in Ca(2+) signaling, may substantially contribute to the mechanism of the loss of genomic discrimination, in vivo, between the fed and fasted states. We believe that the requirement for complete Anx7 gene dosage and IPTR3 expression in islets of Langerhans will prove to be of fundamental importance for understanding the mechanism of nutritional sensing in health and disease.  相似文献   
59.
60.
It is widely appreciated that inflammatory responses in peripheral tissues are usually associated to the development of acidic microenvironments. Despite this, there are few studies aimed to analyze the effect of extracellular pH on immune cell functions. We analyzed the impact of acidosis on the behavior of dendritic cells (DCs) derived from murine bone marrow. We found that extracellular acidosis (pH 6.5) markedly stimulated the uptake of FITC-OVA, FITC-dextran, and HRP by DCs. In fact, to reach similar levels of endocytosis, DCs cultured at pH 7.3 required concentrations of Ag in the extracellular medium almost 10-fold higher compared with DCs cultured at pH 6.5. Not only the endocytic capacity of DCs was up-regulated by extracellular acidosis, but also the expression of CD11c, MHC class II, CD40, and CD86 as well as the acquisition of extracellular Ags by DCs for MHC class I-restricted presentation. Importantly, DCs pulsed with Ag under acidosis showed an improved efficacy to induce both specific CD8(+) CTLs and specific Ab responses in vivo. Our results suggest that extracellular acidosis improves the Ag-presenting capacity of DCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号