首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   505篇
  免费   48篇
  2021年   4篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   16篇
  2014年   11篇
  2013年   32篇
  2012年   23篇
  2011年   40篇
  2010年   13篇
  2009年   15篇
  2008年   25篇
  2007年   23篇
  2006年   29篇
  2005年   21篇
  2004年   30篇
  2003年   33篇
  2002年   16篇
  2001年   8篇
  1999年   7篇
  1998年   6篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1992年   8篇
  1991年   6篇
  1990年   3篇
  1989年   9篇
  1988年   7篇
  1987年   8篇
  1986年   5篇
  1985年   12篇
  1984年   5篇
  1983年   8篇
  1981年   3篇
  1979年   8篇
  1978年   9篇
  1977年   2篇
  1976年   2篇
  1975年   6篇
  1974年   5篇
  1973年   7篇
  1972年   18篇
  1971年   9篇
  1970年   6篇
  1969年   3篇
  1968年   7篇
  1966年   5篇
  1965年   7篇
排序方式: 共有553条查询结果,搜索用时 15 毫秒
221.
222.
The synthesis of 2'-O-methylcytidylyl (3'-5')cytidine by the triester method using as protecting groups, 2,2,2-trichloroethyl for phosphate hydroxyl group, p-chlorophenyoxyacetyl for 5-hydroxyl group, methoxymethylidene for 2',3'-cis-diol system, and benzoyl for the exo-amino group of cytidine is presented. The obtained product was characterised by UV, electrophoresis, chromatography and an enzymatic digestion.  相似文献   
223.
Tuftsin induced tumor necrosis activity was investigated. The activity was found in mice serum several days after i.p. injection of tuftsin. Further experiments with adhering peritoneal and spleen cells indicated that macrophages were the source of the observed activity. The same effect was observed when promyelocytic leukemia cells (HL60) were stimulated with different concentrations of the peptide. These showed yet another possible mechanism for tuftsin antineoplastic activity.  相似文献   
224.
225.
The metabolic pathway for histidine biosynthesis is interesting from an evolutionary perspective because of the diversity of gene organizations and protein structures involved. Hydrolysis of phosphoribosyl-AMP, the third step in the histidine biosynthetic pathway, is carried out by PR-AMP cyclohydrolase, the product of the hisI gene. The three-dimensional structure of PR-AMP cyclohydrolase from Methanobacterium thermoautotrophicum was solved and refined to 1.7 A resolution. The enzyme is a homodimer. The position of the Zn(2+)-binding site that is essential for catalysis was inferred from the positions of bound Cd(2+) ions, which were part of the crystallization medium. These metal binding sites include three cysteine ligands, two from one monomer and the third from the second monomer. The enzyme remains active when Cd(2+) is substituted for Zn(2+). The likely binding site for Mg(2+), also necessary for activity in a homologous cyclohydrolase, was also inferred from Cd(2+) positions and is comprised of aspartic acid side chains. The putative substrate-binding cleft is formed at the interface between the two monomers of the dimer. This fact, combined with the localization of the Zn(2+)-binding site, indicates that the enzyme is an obligate dimer.  相似文献   
226.
Pseudouridine (5-beta-D-ribofuranosyluracil, Psi) is the most commonly found modified base in RNA. Conversion of uridine to Psi is performed enzymatically in both prokaryotes and eukaryotes by pseudouridine synthases (EC 4.2.1.70). The Escherichia coli Psi-synthase RluD modifies uridine to Psi at positions 1911, 1915 and 1917 within 23S rRNA. RluD also possesses a second function related to proper assembly of the 50S ribosomal subunit that is independent of Psi-synthesis. Here, we report the crystal structure of the catalytic module of RluD (residues 68-326; DeltaRluD) refined at 1.8A to a final R-factor of 21.8% (R(free)=24.3%). DeltaRluD is a monomeric enzyme having an overall mixed alpha/beta fold. The DeltaRluD molecule consists of two subdomains, a catalytic subdomain and C-terminal subdomain with the RNA-binding cleft formed by loops extending from the catalytic sub-domain. The catalytic sub-domain of DeltaRluD has a similar fold as in TruA, TruB and RsuA, with the location of the RNA-binding cleft, active-site and conserved, catalytic Asp residue superposing in all four structures. Superposition of the crystal structure of TruB bound to a T-stem loop with RluD reveals that similar RNA-protein interactions for the flipped-out uridine base would exist in both structures, implying that base-flipping is necessary for catalysis. This observation also implies that the specificity determinants for site-specific RNA-binding and recognition likely reside in parts of RluD beyond the active site.  相似文献   
227.
Antibodies (Abs) against the V3 loop of the human immunodeficiency virus type 1 gp120 envelope glycoprotein were initially considered to mediate only type-specific neutralization of T-cell-line-adapted viruses. However, recent data show that cross-neutralizing V3 Abs also exist, and primary isolates can be efficiently neutralized with anti-V3 monoclonal Abs (MAbs). The neutralizing activities of anti-V3 polyclonal Abs and MAbs may, however, be limited due to antigenic variations of the V3 region, a lack of V3 exposure on the surface of intact virions, or Ab specificity. For clarification of this issue, a panel of 32 human anti-V3 MAbs were screened for neutralization of an SF162-pseudotyped virus in a luciferase assay. MAbs selected with a V3 fusion protein whose V3 region mimics the conformation of the native virus were significantly more potent than MAbs selected with V3 peptides. Seven MAbs were further tested for neutralizing activity against 13 clade B viruses in a single-round peripheral blood mononuclear cell assay. While there was a spectrum of virus sensitivities to the anti-V3 MAbs observed, 12 of the 13 viruses were neutralized by one or more of the anti-V3 MAbs. MAb binding to intact virions correlated significantly with binding to solubilized gp120s and with the potency of neutralization. These results demonstrate that the V3 loop is accessible on the native virus envelope, that the strength of binding of anti-V3 Abs correlates with the potency of neutralization, that V3 epitopes may be shared rather than type specific, and that Abs against the V3 loop, particularly those targeting conformational epitopes, can mediate the neutralization of primary isolates.  相似文献   
228.
Intracellular glucose in Escherichia coli cells imported by phosphoenolpyruvate-dependent phosphotransferase system-independent uptake is phosphorylated by glucokinase by using ATP to yield glucose-6-phosphate. Glucokinases (EC 2.7.1.2) are functionally distinct from hexokinases (EC 2.7.1.1) with respect to their narrow specificity for glucose as a substrate. While structural information is available for ADP-dependent glucokinases from Archaea, no structural information exists for the large sequence family of eubacterial ATP-dependent glucokinases. Here we report the first structure determination of a microbial ATP-dependent glucokinase, that from E. coli O157:H7. The crystal structure of E. coli glucokinase has been determined to a 2.3-A resolution (apo form) and refined to final Rwork/Rfree factors of 0.200/0.271 and to 2.2-A resolution (glucose complex) with final Rwork/Rfree factors of 0.193/0.265. E. coli GlK is a homodimer of 321 amino acid residues. Each monomer folds into two domains, a small alpha/beta domain (residues 2 to 110 and 301 to 321) and a larger alpha+beta domain (residues 111 to 300). The active site is situated in a deep cleft between the two domains. E. coli GlK is structurally similar to Saccharomyces cerevisiae hexokinase and human brain hexokinase I but is distinct from the ADP-dependent GlKs. Bound glucose forms hydrogen bonds with the residues Asn99, Asp100, Glu157, His160, and Glu187, all of which, except His160, are structurally conserved in human hexokinase 1. Glucose binding results in a closure of the small domains, with a maximal Calpha shift of approximately 10 A. A catalytic mechanism is proposed that is consistent with Asp100 functioning as the general base, abstracting a proton from the O6 hydroxyl of glucose, followed by nucleophilic attack at the gamma-phosphoryl group of ATP, yielding glucose-6-phosphate as the product.  相似文献   
229.
Complex continuous wavelet transforms are used to study the dynamics of instantaneous phase difference delta phi between the fluctuations of arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV) in a middle cerebral artery. For healthy individuals, this phase difference changes slowly over time and has an almost uniform distribution for the very low-frequency (0.02-0.07 Hz) part of the spectrum. We quantify phase dynamics with the help of the synchronization index gamma = (sin delta phi)2 + (cos delta phi)2 that may vary between 0 (uniform distribution of phase differences, so the time series are statistically independent of one another) and 1 (phase locking of ABP and CBFV, so the former drives the latter). For healthy individuals, the group-averaged index gamma has two distinct peaks, one at 0.11 Hz [gamma = 0.59 +/- 0.09] and another at 0.33 Hz (gamma = 0.55 +/- 0.17). In the very low-frequency range (0.02-0.07 Hz), phase difference variability is an inherent property of an intact autoregulation system. Consequently, the average value of the synchronization parameter in this part of the spectrum is equal to 0.13 +/- 0.03. The phase difference variability sheds new light on the nature of cerebral hemodynamics, which so far has been predominantly characterized with the help of the high-pass filter model. In this intrinsically stationary approach, based on the transfer function formalism, the efficient autoregulation is associated with the positive phase shift between oscillations of CBFV and ABP. However, the method is applicable only in the part of the spectrum (0.1-0.3 Hz) where the coherence of these signals is high. We point out that synchrony analysis through the use of wavelet transforms is more general and allows us to study nonstationary aspects of cerebral hemodynamics in the very low-frequency range where the physiological significance of autoregulation is most strongly pronounced.  相似文献   
230.
Intratumoral heterogeneity of breast cancer remains a major challenge in successful treatment. Failure of cancer therapies can also be accredited to inability to systemically eradicate cancer stem cells (CSCs). Recent evidence points to the role of epithelial-mesenchymal transition (EMT) in expanding the pool of tumor cells with CSCs features. Thus, we assessed expression level as well as heterogeneity of CSCs markers in primary tumors (PT), lymph node metastasis (LNM), and circulating tumor cells (CTCs)–enriched blood fractions in order to correlate them with signs of EMT activation as well as clinicopathological data of breast cancer patients. Level of CSCs markers (ALDH1, CD44, CD133, OCT-4, NANOG) and EMT markers was quantified in PT (N=107), LNM (N=56), and CTCs-enriched blood fractions (N=85). Heterogeneity of CSCs markers expression within each PT and LNM was assessed by calculating Gini Index. Percentage of ALDH1-positive cells was elevated in PT in comparison to LNM (P = .005). However, heterogeneity of the four CSCs markers: ALDH1 (P = .019), CD133 (P = .009), OCT-4 (P = .027), and CD44 (P < .001) was decreased in LNM. Samples classified as mesenchymal (post-EMT) showed elevated expression of CSCs markers (OCT-4 and CD44 in PT; OCT-4 in LNM; ALDH1, OCT-4, NANOG, CD44 in CTCs). Patients with mesenchymal-like CTCs had worse prognosis than patients with epithelial-like or no CTCs (P = .0025). CSCs markers are enriched in PT, LNM, and CTCs with mesenchymal features, but their heterogeneity is decreased in metastatic lymph nodes. Mesenchymal CTCs phenotype correlates with poor prognosis of the patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号