首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   510篇
  免费   21篇
  531篇
  2022年   5篇
  2021年   9篇
  2020年   6篇
  2019年   5篇
  2018年   9篇
  2017年   8篇
  2016年   13篇
  2015年   19篇
  2014年   21篇
  2013年   24篇
  2012年   31篇
  2011年   35篇
  2010年   22篇
  2009年   17篇
  2008年   17篇
  2007年   19篇
  2006年   36篇
  2005年   19篇
  2004年   19篇
  2003年   24篇
  2002年   23篇
  2001年   10篇
  2000年   8篇
  1999年   8篇
  1998年   3篇
  1997年   4篇
  1995年   3篇
  1994年   5篇
  1992年   7篇
  1991年   5篇
  1990年   6篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   6篇
  1984年   4篇
  1983年   3篇
  1981年   3篇
  1980年   4篇
  1978年   3篇
  1976年   3篇
  1974年   6篇
  1973年   6篇
  1972年   3篇
  1971年   4篇
  1970年   8篇
  1969年   3篇
  1966年   4篇
  1961年   2篇
排序方式: 共有531条查询结果,搜索用时 15 毫秒
11.
12.
Myocardial infarction requires urgent reperfusion to salvage viable heart tissue. However, reperfusion increases infarct size further by promoting mitochondrial damage in cardiomyocytes. Exosomes from a wide range of different cell sources have been shown to activate cardioprotective pathways in cardiomyocytes, thereby reducing infarct size. Yet, it is currently challenging to obtain highly pure exosomes in quantities enough for clinical studies. To overcome this problem, we used exosomes isolated from CTX0E03 neuronal stem cells, which are genetically stable, conditionally inducible and can be produced on an industrial scale. However, it is unknown whether exosomes from neuronal stem cells may reduce cardiac ischaemia/reperfusion injury. In this study, we demonstrate that exosomes from differentiating CTX0E03 cells can reduce infarct size in mice. In an in vitro assay, these exosomes delayed cardiomyocyte mitochondrial permeability transition pore opening, which is responsible for cardiomyocyte death after reperfusion. The mechanism of MPTP inhibition was via gp130 signalling and the downstream JAK/STAT pathway. Our results support previous findings that exosomes from non-cardiomyocyte-related cells produce exosomes capable of protecting cardiomyocytes from myocardial infarction. We anticipate our findings may encourage scientists to use exosomes obtained from reproducible clinical-grade stocks of cells for their ischaemia/reperfusion studies.  相似文献   
13.
Abstract

The series of symmetrical and unsymmetrical isoquinolinium-5-carbaldoximes was designed and prepared for cholinesterase reactivation purposes. The novel compounds were evaluated for intrinsic acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) inhibition, when the majority of novel compounds resulted with high inhibition of both enzymes and only weak inhibitors were selected for reactivation experiments on human AChE or BChE inhibited by sarin, VX, or paraoxon. The AChE reactivation for all used organophosphates was found negligible if compared to the reactivation ability of obidoxime. Importantly, two compounds were found to reactivate BChE inhibited by sarin or VX better to obidoxime at human attainable concentration. One compound resulted as better reactivator of NEMP (VX surrogate)-inhibited BChE than obidoxime. The in vitro results were further rationalized by molecular docking studies showing future directions on designing potent BChE reactivators.  相似文献   
14.
Aquaporin-4 (AQP4) is the primary cellular water channel in the brain and is abundantly expressed by astrocytes along the blood-brain barrier and brain-cerebrospinal fluid interfaces. Water transport via AQP4 contributes to the activity-dependent volume changes of the extracellular space (ECS), which affect extracellular solute concentrations and neuronal excitability. AQP4 is anchored by α-syntrophin (α-syn), the deletion of which leads to reduced AQP4 levels in perivascular and subpial membranes. We used the real-time iontophoretic method and/or diffusion-weighted magnetic resonance imaging to clarify the impact of α-syn deletion on astrocyte morphology and changes in extracellular diffusion associated with cell swelling in vitro and in vivo. In mice lacking α-syn, we found higher resting values of the apparent diffusion coefficient of water (ADCW) and the extracellular volume fraction (α). No significant differences in tortuosity (λ) or non-specific uptake (k′), were found between α-syn-negative (α-syn −/−) and α-syn-positive (α-syn +/+) mice. The deletion of α-syn resulted in a significantly smaller relative decrease in α observed during elevated K+ (10 mM) and severe hypotonic stress (−100 mOsmol/l), but not during mild hypotonic stress (−50 mOsmol/l). After the induction of terminal ischemia/anoxia, the final values of ADCW as well as of the ECS volume fraction α indicate milder cell swelling in α-syn −/− in comparison with α-syn +/+ mice. Shortly after terminal ischemia/anoxia induction, the onset of a steep rise in the extracellular potassium concentration and an increase in λ was faster in α-syn −/− mice, but the final values did not differ between α-syn −/− and α-syn +/+ mice. This study reveals that water transport through AQP4 channels enhances and accelerates astrocyte swelling. The substantially altered ECS diffusion parameters will likely affect the movement of neuroactive substances and/or trophic factors, which in turn may modulate the extent of tissue damage and/or drug distribution.  相似文献   
15.
Glioblastoma multiforme (GBM) is the most common adult primary tumor of the central nervous system. The current standard of care for glioblastoma patients involves a combination of surgery, radiotherapy and chemotherapy with the alkylating agent temozolomide. Several mechanisms underlying the inherent and acquired temozolomide resistance have been identified and contribute to treatment failure. Early identification of temozolomide-resistant GBM patients and improvement of the therapeutic strategies available to treat this malignancy are of uttermost importance. This review initially looks at the molecular pathways underlying GBM formation and development with a particular emphasis placed on recent therapeutic advances made in the field. Our focus will next be directed toward the molecular mechanisms modulating temozolomide resistance in GBM patients and the strategies envisioned to circumvent this resistance. Finally, we highlight the diagnostic and prognostic value of metabolomics in cancers and assess its potential usefulness in improving the current standard of care for GBM patients.  相似文献   
16.
In the clinic delayed post-conditioning would represent an attractive strategy for the survival of vulnerable neurons after an ischemic event. In this paper we studied the impact of ischemia and delayed post-conditioning on blood and brain tissue concentrations of glutamate and protein synthesis. We designed two groups of animals for analysis of brain tissues and blood after global ischemia and post-conditioning, and one for analysis of blood glutamate after transient focal ischemia.  相似文献   
17.
The period from stroke initiation to the cessation of penumbra damage spread represents a therapeutic window when expansion can be alleviated. In the present work, we studied some biochemical parameters helpful for the estimation of infarct progression and thus for the application of interventions.  相似文献   
18.
19.
20.
World Journal of Microbiology and Biotechnology - Derived from RNA, 5?-ribonucleotides, especially Inosine-5?-monophosphate (IMP) and guanosine-5?-monophosphate (GMP), can enhance...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号