首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7352篇
  免费   320篇
  国内免费   2篇
  7674篇
  2023年   35篇
  2022年   33篇
  2021年   92篇
  2020年   99篇
  2019年   135篇
  2018年   275篇
  2017年   251篇
  2016年   333篇
  2015年   251篇
  2014年   349篇
  2013年   525篇
  2012年   415篇
  2011年   551篇
  2010年   326篇
  2009年   223篇
  2008年   389篇
  2007年   433篇
  2006年   462篇
  2005年   407篇
  2004年   337篇
  2003年   379篇
  2002年   296篇
  2001年   188篇
  2000年   159篇
  1999年   110篇
  1998年   66篇
  1997年   23篇
  1996年   19篇
  1995年   22篇
  1994年   19篇
  1993年   14篇
  1992年   11篇
  1991年   19篇
  1990年   11篇
  1989年   10篇
  1987年   16篇
  1986年   11篇
  1985年   25篇
  1984年   20篇
  1983年   16篇
  1982年   16篇
  1981年   14篇
  1980年   14篇
  1979年   18篇
  1978年   19篇
  1977年   15篇
  1953年   18篇
  1952年   40篇
  1888年   14篇
  1887年   14篇
排序方式: 共有7674条查询结果,搜索用时 15 毫秒
51.
52.
Chrococcoid cyanobacteria of the genus Synechococcus are the important component of marine and freshwater ecosystems. Picocyanobacteria comprise even 80% of total cyanobacterial biomass and contribute to 50% of total primary cyanobacterial bloom production. Chlorophyll (Chl) fluorescence and photosynthetic light response (P-I) curves are commonly used to characterize photoacclimation of Synechococcus strains. Three brackish, picocyanobacterial strains of Synechococcus (BA-132, BA-124, BA-120) were studied. They were grown under 4 irradiances [10, 55, 100, and 145 μmol(photon) m?2 s?1] and at 3 temperatures (15, 22.5, and 30°C). Photosynthetic rate was measured by Clark oxygen electrode, whereas the Chl fluorescence was measured using Pulse Amplitude Modulation fluorometer. Based on P-I, two mechanisms of photoacclimation were recognized in Synechococcus. The maximum value of maximum rate of photosynthesis (P max) expressed per biomass unit at 10 μmol(photon) m?2 s?1 indicated a change in the number of photosynthetic units (PSU). The constant values of initial slope of photosynthetic light response curve (α) and the maximum value of P max expressed per Chl unit at 145 μmol(photon) m?2 s?1 indicated another mechanism, i.e. a change in PSU size. These two mechanisms caused changes in photosynthetic rate and its parameters (compensation point, α, saturation irradiance, dark respiration, P max) upon the influence of different irradiance and temperature. High irradiance had a negative effect on fluorescence parameters, such as the maximum quantum yield and effective quantum yield of PSII photochemistry (φPSII), but it was higher in case of φPSII.  相似文献   
53.
The Ludfordian (Upper Silurian) succession in Podolia, western Ukraine, represents a Silurian carbonate platform developed in an epicontinental sea on the shelf of the paleocontinent of Baltica. Coeval deposits throughout this basin record a positive stable carbon isotope excursion known as the Lau excursion. The record of this excursion in Podolia exhibits an unusual amplitude from highly positive (+6.9 ‰) to highly negative (?5.0 ‰) δ13Ccarb values. In order to link δ13Ccarb development with facies, five sections in the Zbruch River Valley were examined, providing microfacies characterization and revised definitions of the Isakivtsy, Prygorodok, and Varnytsya Formations. The Isakivtsy Fm. is developed as dolosparite replacing originally bioclastic limestone. The Prygorodok Fm., recording strongly depleted (down to ?10.53 ‰) to near zero (0.12 ‰) δ13Ccarb values is developed as laminated, organic-rich dolomicrite with metabentonite and quartz siltstone beds. The Varnytsya Fm. is characterized by peritidal deposition with consistent, slightly negative δ13Ccarb values (?0.57 to ?3.20 ‰). It is proposed that dolomitization of the Isakivtsy Fm. is associated with a sequence boundary and erosional surface. The overlying Prygorodok Fm. represents the proximal part of a TST deposited in restricted and laterally extremely variable environments dominated by microbial carbonate production. The transition to the overlying Varnytsya Fm. facies is marked by a maximum flooding surface. The SB and MFS are potentially correlative within the basin and support a global rapid sea-level fall previously proposed for this interval. The interpretation of the Prygorodok Fm. as coastal lake deposits may explain the unusual δ13Ccarb values and constitute one of the few records of this type of environment identified in the early Paleozoic.  相似文献   
54.
55.
The abundance and the biodiversity of summer zooplankton in the waters of the Drawa drainage (NW Poland) were studied, as was their relation to selected environmental conditions. The conditions upstream, especially in the outlets of lakes, did not affect the zooplankton communities downstream. This was also true of tributaries which had no influence on the shape of the zooplankton communities in the main river. The number of zooplankton in the outlets of eutrophic lakes was greater than in those of mesotrophic lakes. Increased vegetation cover significantly affected mainly the crustacean communities of zooplankton. Larger amounts of zooplankton were observed in rivers where the riparian zone was not covered with vegetation, but this difference was not significant. The hydrological conditions of the rivers and the Secchi depth visibility strongly impacted the composition of the zooplankton. The influence of abiotic factors was most pronounced on the abundance of cladocerans, and least pronounced on the abundance of rotifers.  相似文献   
56.
57.
The intermolecular interaction energies in central guanine triad of telomeric B-DNA were estimated based on ab initio quantum chemistry calculations on the MP2/aDZ level of theory. The source of structural information was molecular dynamics simulation of both canonical (AGGGTT) and oxidized (AG8oxoGGTT) telomere units. Our calculations demonstrate that significant stiffness of central triad occurs if 8oxoG is present. The origin of such feature is mainly due to the increase of stacking interactions of 8oxoG with neighbouring guanine molecules and stronger hydrogen bonding formation of 8oxoG with cytosine if compared with canonical guanine. Another interesting observation is the context independence of stacking interactions of 8oxoG. Unlike to 5′-G2/G3-3′ and 5′-G3/G4-3′ sequences which are energetically different, 5′-G2/8oxoG3-3′ and 5′-8oxoG3/G4-3′ sequences are almost iso-energetic.  相似文献   
58.
The postsynaptic density (PSD) is a dynamic multi-protein complex attached to the postsynaptic membrane composed of several hundred proteins such as receptors and channels, scaffolding and adaptor proteins, cell-adhesion proteins, cytoskeletal proteins, G-proteins and their modulators and signaling molecules including kinases and phosphtases. This review focuses on the prominent PSD scaffolds proteins such as members of the MAGUK (membrane-associated guanylyl kinase), Shank (SH3 domain and ankyrin repeat-containing protein) and Homer families. These molecules interact simultaneously with different kinds of receptors and modulate their function by linking the receptors to downstream signaling events. For example PSD 95, a main member of MAGUK family, interacts directly with carboxyl termini of NMDA receptor subunits and clusters them to the postsynaptic membrane. In addition, PSD 95 is involved in binding and organizing proteins connected with NMDAR signaling. Based on the modular character and ability to form multiproteins interactions, MAGUK, Shank and Homer are perfectly suited to act as a major scaffold in postsynaptic density.  相似文献   
59.
The formation of copper(II) complexes of an aminoglycoside antibiotic – sisomicin – was studied by potentiometry and spectroscopic techniques (UV–Vis, CD, NMR and EPR). At physiological pH, Cu(II) is bound to both amino functions and hydroxyl oxygen of the 2-deoxystreptamine moiety. When pH increases slightly, another amino group located at the aminosugar ring becomes engaged in the coordination process. Microbiological studies with the use of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa showed that copper(II) does not interfere with the bactericidal action of sisomicin.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号