首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   676篇
  免费   41篇
  国内免费   2篇
  2023年   3篇
  2022年   8篇
  2021年   26篇
  2020年   10篇
  2019年   7篇
  2018年   16篇
  2017年   12篇
  2016年   30篇
  2015年   44篇
  2014年   37篇
  2013年   61篇
  2012年   56篇
  2011年   74篇
  2010年   45篇
  2009年   39篇
  2008年   47篇
  2007年   43篇
  2006年   37篇
  2005年   44篇
  2004年   20篇
  2003年   16篇
  2002年   17篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1992年   3篇
  1989年   1篇
  1988年   1篇
  1981年   1篇
  1974年   1篇
  1971年   1篇
  1949年   1篇
排序方式: 共有719条查询结果,搜索用时 125 毫秒
711.
Few members of the well‐studied marine phytoplankton taxa have such a complex and polymorphic life cycle as the genus Phaeocystis. However, despite the ecological and biogeochemical importance of Phaeocystis blooms, the life cycle of the major bloom‐forming species of this genus remains illusive and poorly resolved. At least six different life stages and up to 15 different functional components of the life cycle have been proposed. Our culture and field observations indicate that there is a previously unrecognized stage in the life cycle of P. antarctica G. Karst. This stage comprises nonmotile cells that range in size from ~4.2 to 9.8 μm in diameter and form aggregates in which interstitial spaces between cells are small or absent. The aggregates (hereafter called attached aggregates, AAs) adhere to available surfaces. In field samples, small AAs, surrounded by a colony skin, adopt an epiphytic lifestyle and adhere in most cases to setae or spines of diatoms. These AAs, either directly or via other life stages, produce the colonial life stage. Culture studies indicate that bloom‐forming, colonial stages release flagellates (microzoospores) that fuse and form AAs, which can proliferate on the bottom of culture vessels and can eventually reform free‐floating colonies. We propose that these AAs are a new stage in the life cycle of P. antarctica, which we believe to be the zygote, thus documenting sexual reproduction in this species for the first time.  相似文献   
712.
713.
714.

Thermophilic microorganisms as well as acetogenic bacteria are both considered ancient. Interestingly, only a few species of bacteria, all belonging to the family Thermoanaerobacteraceae, are described to conserve energy from acetate formation with hydrogen as electron donor and carbon dioxide as electron acceptor. This review reflects the metabolic differences between Moorella spp., Thermoanaerobacter kivui and Thermacetogenium phaeum, with focus on the biochemistry of autotrophic growth and energy conservation. The potential of these thermophilic acetogens for biotechnological applications is discussed briefly.

  相似文献   
715.
716.
Caldicellulosiruptor bescii grows optimally at 78°C and is able to decompose high concentrations of lignocellulosic plant biomass without the need for thermochemical pretreatment. C. bescii ferments both C5 and C6 sugars primarily to hydrogen gas, lactate, acetate, and CO2 and is of particular interest for metabolic engineering applications given the recent availability of a genetic system. Developing optimal strains for technological use requires a detailed understanding of primary metabolism, particularly when the goal is to divert all available reductant (electrons) toward highly reduced products such as biofuels. During an analysis of the C. bescii genome sequence for oxidoreductase-type enzymes, evidence was uncovered to suggest that the primary redox metabolism of C. bescii has a completely uncharacterized aspect involving tungsten, a rarely used element in biology. An active tungsten utilization pathway in C. bescii was demonstrated by the heterologous production of a tungsten-requiring, aldehyde-oxidizing enzyme (AOR) from the hyperthermophilic archaeon Pyrococcus furiosus. Furthermore, C. bescii also contains a tungsten-based AOR-type enzyme, here termed XOR, which is phylogenetically unique, representing a completely new member of the AOR tungstoenzyme family. Moreover, in C. bescii, XOR represents ca. 2% of the cytoplasmic protein. XOR is proposed to play a key, but as yet undetermined, role in the primary redox metabolism of this cellulolytic microorganism.  相似文献   
717.
  相似文献   
718.
Modelling of activated sludge processes is a commonly used technique to design and optimize wastewater treatment processes. Since wastewater and activated sludge is characterized by chemical oxygen demand (COD) measurements, units of state variables describing organic matter are expressed as equivalent amounts of COD. However, current procedures for measuring it have several drawbacks, including the production of hazardous wastes, so the utility of other variables for characterizing the organic load in modelling, such as total organic carbon (TOC), warrant re-evaluation. Other advantages of TOC over COD are that it provides matrix-independent analytical results and it can be readily measured online. Proposals for TOC-based models were made in the 1990s, but they seem to have sunk into obscurity. To re-assess the value of TOC for this purpose, we have recalculated the EAWAG module for Bio-P removal coupled to the Activated Sludge Model No. 3 on a TOC basis, and tested it against data acquired in batch experiments with four single carbon sources (acetate, glucose, citrate and casein). The batch test-based calibrations showed a good match with experimental data, following modifications of the model to account for the anaerobic volumes and retention times applied in the tests.  相似文献   
719.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号