首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   784篇
  免费   45篇
  国内免费   2篇
  831篇
  2023年   6篇
  2022年   10篇
  2021年   26篇
  2020年   10篇
  2019年   7篇
  2018年   18篇
  2017年   14篇
  2016年   33篇
  2015年   44篇
  2014年   39篇
  2013年   64篇
  2012年   62篇
  2011年   76篇
  2010年   48篇
  2009年   41篇
  2008年   55篇
  2007年   51篇
  2006年   44篇
  2005年   50篇
  2004年   27篇
  2003年   22篇
  2002年   20篇
  2001年   10篇
  2000年   6篇
  1999年   8篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1992年   5篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1984年   3篇
  1981年   1篇
  1980年   1篇
  1974年   1篇
  1971年   1篇
  1965年   1篇
  1949年   1篇
排序方式: 共有831条查询结果,搜索用时 15 毫秒
71.
This work concerns the effect of low frequency electromagnetic fields (ELF) on biochemical properties of human oral keratinocytes (HOK). Cells exposed to a 2 mT, 50 Hz, magnetic field, showed by scanning electron microscopy (SEM) modification in shape and morphology; these modifications were also associated with different actin distribution, revealed by phalloidin fluorescence analysis. Moreover, exposed cells had a smaller clonogenic capacity, and decreased cellular growth. Indirect immunofluorescence with fluorescent antibodies against involucrin and beta-catenin, both differentiation and adhesion markers, revealed an increase in involucrin and beta-catenin expression. The advance in differentiation was confirmed by a decrease of expression of epidermal growth factor (EGF) receptor in exposed cells, supporting the idea that exposure to electromagnetic field carries keratinocytes to higher differentiation level. These observations support the hypothesis that 50 Hz electromagnetic fields may modify cell morphology and interfere in differentiation and cellular adhesion of normal keratinocytes.  相似文献   
72.
73.
Parasites causing malaria need to migrate in order to penetrate tissue barriers and enter host cells. Here we show that the actin filament-binding protein coronin regulates gliding motility in Plasmodium berghei sporozoites, the highly motile forms of a rodent malaria-causing parasite transmitted by mosquitoes. Parasites lacking coronin show motility defects that impair colonization of the mosquito salivary glands but not migration in the skin, yet result in decreased transmission efficiency. In non-motile sporozoites low calcium concentrations mediate actin-independent coronin localization to the periphery. Engagement of extracellular ligands triggers an intracellular calcium release followed by the actin-dependent relocalization of coronin to the rear and initiation of motility. Mutational analysis and imaging suggest that coronin organizes actin filaments for productive motility. Using coronin-mCherry as a marker for the presence of actin filaments we found that protein kinase A contributes to actin filament disassembly. We finally speculate that calcium and cAMP-mediated signaling regulate a switch from rapid parasite motility to host cell invasion by differentially influencing actin dynamics.  相似文献   
74.
Chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of higher plants uses both NADP(H) and NAD(H) as coenzyme and consists of one (GapA) or two types of subunits (GapA, GapB). AB-GAPDH is regulated in vivo through the action of thioredoxin and metabolites, showing higher kinetic preference for NADPH in the light than in darkness due to a specific effect on kcat(NADPH). Previous crystallographic studies on spinach chloroplast A4-GAPDH complexed with NADP or NAD showed that residues Thr33 and Ser188 are involved in NADP over NAD selectivity by interacting with the 2'-phosphate group of NADP. This suggested a possible involvement of these residues in the regulatory mechanism. Mutants of recombinant spinach GapA (A4-GAPDH) with Thr33 or Ser188 replaced by Ala (T33A, S188A and double mutant T33A/S188A) were produced, expressed in Escherichia coli, and compared to wild-type recombinant A4-GAPDH, in terms of crystal structures and kinetic properties. Affinity for NADPH was decreased significantly in all mutants, and kcat(NADPH) was lowered in mutants carrying the substitution of Ser188. NADH-dependent activity was unaffected. The decrease of kcat/Km of the NADPH-dependent reaction in Ser188 mutants resembles the behaviour of AB-GAPDH inhibited by oxidized thioredoxin, as confirmed by steady-state kinetic analysis of native enzyme. A significant expansion of size of the A4-tetramer was observed in the S188A mutant compared to wild-type A4. We conclude that in the absence of interactions between Ser188 and the 2'-phosphate group of NADP, the enzyme structure relaxes to a less compact conformation, which negatively affects the complex catalytic cycle of GADPH. A model based on this concept might be developed to explain the in vivo light-regulation of the GAPDH.  相似文献   
75.
TFIIH plays an essential role in RNA polymerase I transcription   总被引:7,自引:0,他引:7  
  相似文献   
76.
Peripheral blood CD4+ T cell counts are a key measure for assessing disease progression and need for antiretroviral therapy in HIV-infected patients. More recently, studies have demonstrated a dramatic depletion of mucosal CD4+ T cells during acute infection that is maintained during chronic pathogenic HIV as well as SIV infection. A different clinical disease course is observed during the infection of natural hosts of SIV infection, such as sooty mangabeys (Cercocebus atys), which typically do not progress to AIDS. Previous studies have determined that SIV+ mangabeys generally maintain healthy levels of CD4+ T cells despite having viral replication comparable to HIV-infected patients. In this study, we identify the emergence of a multitropic (R5/X4/R8-using) SIV infection after 43 or 71 wk postinfection in two mangabeys that is associated with an extreme, persistent (>5.5 years), and generalized loss of CD4+ T cells (5-80 cells/microl of blood) in the absence of clinical signs of AIDS. This study demonstrates that generalized CD4+ T cell depletion from the blood and mucosal tissues is not sufficient to induce AIDS in this natural host species. Rather, AIDS pathogenesis appears to be the cumulative result of multiple aberrant immunologic parameters that include CD4+ T cell depletion, generalized immune activation, and depletion/dysfunction of non-CD4+ T cells. Therefore, these data provide a rationale for investigating multifaceted therapeutic strategies to prevent progression to AIDS, even following dramatic CD4 depletion, such that HIV+ humans can survive normal life spans analogous to what occurs naturally in SIV+ mangabeys.  相似文献   
77.
78.
79.
The synepitheliochorial placenta of ruminants is constructed of multiple tissue layers that separate maternal and fetal blood. In nuclear transfer cloned ruminants, however, placental anomalies such as abnormal vascular development and hemorrhagic cotyledons have been reported. We have investigated the possible exchange of genetic material between somatic cell nuclear transfer cloned (SCNT) bovine fetuses and recipients at day 80 of gestation using mitochondrial DNA (mtDNA) as a marker. Twenty-three recovered SCNT-fetuses and their recipients were screened for divergent and thus informative mtDNA combinations. Twenty-one fetuses generated by in vitro fertilization (IVF) or multiple ovulation embryo transfer (MOET) and the corresponding recipients served as controls. A search for recipient mtDNA haplotype in DNA extracts from fetal blood by PCR-RFLP analysis revealed three cases of chimerism (two SCNT, one IVF) among a total of 19 informative fetus-recipient pairs (eight SCNT, seven IVF, four MOET). Placental anomalies have also been observed in some IVF fetuses and the present data therefore suggests transplacental leakage of cell components or cells from the recipient into some fetuses generated by in vitro techniques. Further studies are necessary to determine (i) the nature of leaked material, (ii) whether there is bi-directional leakage, and (iii) whether leaked material is present in recipients and calves after parturition, i.e. whether leakage takes place in vivo. If recipients were chimeric for DNA or cells derived from genetically modified SCNT (or IVF) embryos, their subsequent utilization might be affected.  相似文献   
80.
Phosphorylation of the skeletal muscle (RyR1) and cardiac muscle (RyR2) ryanodine receptors has been reported to modulate channel activity. Abnormally high phosphorylation levels (hyperphosphorylation) at Ser-2843 in RyR1 and Ser-2809 in RyR2 and dissociation of FK506-binding proteins from the receptors have been implicated as one of the causes of altered calcium homeostasis observed during human heart failure. Using site-directed mutagenesis, we prepared recombinant RyR1 and RyR2 mutant receptors mimicking constitutively phosphorylated and dephosphorylated channels carrying a Ser/Asp (RyR1-S2843D and RyR2-S2809D) and Ser/Ala (RyR1-S2843A and RyR2-S2809A) substitution, respectively. Following transient expression in human embryonic kidney 293 cells, the effects of Ca2+, Mg2+, and ATP on channel function were determined using single channel and [3H]ryanodine binding measurements. In both assays, neither the skeletal nor cardiac mutants showed significant differences compared with wild type. Similarly essentially identical caffeine responses were observed in Ca2+ imaging measurements. Co-immunoprecipitation and Western blot analysis showed comparable binding of FK506-binding proteins to wild type and mutant receptors. Finally metabolic labeling experiments showed that the cardiac ryanodine receptor was phosphorylated at additional sites. Taken together, the results did not support the view that phosphorylation of a single site (RyR1-Ser-2843 and RyR2-Ser-2809) substantially changes RyR1 and RyR2 channel function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号