首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   694篇
  免费   49篇
  国内免费   2篇
  2023年   4篇
  2022年   8篇
  2021年   18篇
  2020年   11篇
  2019年   6篇
  2018年   10篇
  2017年   7篇
  2016年   16篇
  2015年   55篇
  2014年   41篇
  2013年   64篇
  2012年   61篇
  2011年   58篇
  2010年   43篇
  2009年   38篇
  2008年   55篇
  2007年   44篇
  2006年   34篇
  2005年   35篇
  2004年   32篇
  2003年   22篇
  2002年   27篇
  2001年   3篇
  2000年   3篇
  1999年   10篇
  1998年   8篇
  1997年   3篇
  1996年   2篇
  1995年   6篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1989年   5篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1982年   4篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有745条查询结果,搜索用时 26 毫秒
71.
Light strongly influences the circadian timing system in humans via non-image-forming photoreceptors in the retinal ganglion cells. Their spectral sensitivity is highest in the short-wavelength range of the visible light spectrum as demonstrated by melatonin suppression, circadian phase shifting, acute physiological responses, and subjective alertness. We tested the impact of short wavelength light (460 nm) on sleep EEG power spectra and sleep architecture. We hypothesized that its acute action on sleep is similar in magnitude to reported effects for polychromatic light at higher intensities and stronger than longer wavelength light (550 nm). The sleep EEGs of eight young men were analyzed after 2-h evening exposure to blue (460 nm) and green (550 nm) light of equal photon densities (2.8 x 10(13) photons x cm(-2) x s(-1)) and to dark (0 lux) under constant posture conditions. The time course of EEG slow-wave activity (SWA; 0.75-4.5 Hz) across sleep cycles after blue light at 460 nm was changed such that SWA was slightly reduced in the first and significantly increased during the third sleep cycle in parietal and occipital brain regions. Moreover, blue light significantly shortened rapid eye movement (REM) sleep duration during these two sleep cycles. Thus the light effects on the dynamics of SWA and REM sleep durations were blue shifted relative to the three-cone visual photopic system probably mediated by the circadian, non-image-forming visual system. Our results can be interpreted in terms of an induction of a circadian phase delay and/or repercussions of a stronger alerting effect after blue light, persisting into the sleep episode.  相似文献   
72.
Resolution of the crystal structure of the banana fruit endo-beta-1,3-glucanase by synchrotron X-ray diffraction at 1.45-A resolution revealed that the enzyme possesses the eightfold beta/alpha architecture typical for family 17 glycoside hydrolases. The electronegatively charged catalytic central cleft harbors the two glutamate residues (Glu94 and Glu236) acting as hydrogen donor and nucleophile residue, respectively. Modeling using a beta-1,3 linked glucan trisaccharide as a substrate confirmed that the enzyme readily accommodates a beta-1,3-glycosidic linkage in the slightly curved catalytic groove between the glucose units in positions -2 and -1 because of the particular orientation of residue Tyr33 delimiting subsite -2. The location of Phe177 in the proximity of subsite +1 suggested that the banana glucanase might also cleave beta-1,6-branched glucans. Enzymatic assays using pustulan as a substrate demonstrated that the banana glucanase can also cleave beta-1,6-glucans as was predicted from docking experiments. Similar to many other plant endo-beta-1,3-glucanases, the banana glucanase exhibits allergenic properties because of the occurrence of well-conserved IgE-binding epitopes on the surface of the enzyme. These epitopes might trigger some cross-reactions toward IgE antibodies and thus account for the IgE-binding cross-reactivity frequently reported in patients with the latex-fruit syndrome.  相似文献   
73.
S100A16, a novel calcium-binding protein of the EF-hand superfamily   总被引:1,自引:0,他引:1  
S100A16 protein is a new and unique member of the EF-hand Ca(2+)-binding proteins. S100 proteins are cell- and tissue-specific and are involved in many intra- and extracellular processes through interacting with specific target proteins. In the central nervous system S100 proteins are implicated in cell proliferation, differentiation, migration, and apoptosis as well as in cognition. S100 proteins became of major interest because of their close association with brain pathologies, for example depression or Alzheimer's disease. Here we report for the first time the purification and biochemical characterization of human and mouse recombinant S100A16 proteins. Flow dialysis revealed that both homodimeric S100A16 proteins bind two Ca(2+) ions with the C-terminal EF-hand of each subunit, the human protein exhibiting a 2-fold higher affinity. Trp fluorescence variations indicate conformational changes in the orthologous proteins upon Ca(2+) binding, whereas formation of a hydrophobic patch, implicated in target protein recognition, only occurs in the human S100A16 protein. In situ hybridization analysis and immunohistochemistry revealed a widespread distribution in the mouse brain. Furthermore, S100A16 expression was found to be astrocyte-specific. Finally, we investigated S100A16 intracellular localization in human glioblastoma cells. The protein was found to accumulate within nucleoli and to translocate to the cytoplasm in response to Ca(2+) stimulation.  相似文献   
74.
Zebrafish possess a unique yet poorly understood capacity for cardiac regeneration. Here, we show that regeneration proceeds through two coordinated stages following resection of the ventricular apex. First a blastema is formed, comprised of progenitor cells that express precardiac markers, undergo differentiation, and proliferate. Second, epicardial tissue surrounding both cardiac chambers induces developmental markers and rapidly expands, creating a new epithelial cover for the exposed myocardium. A subpopulation of these epicardial cells undergoes epithelial-to-mesenchymal transition (EMT), invades the wound, and provides new vasculature to regenerating muscle. During regeneration, the ligand fgf17b is induced in myocardium, while receptors fgfr2 and fgfr4 are induced in adjacent epicardial-derived cells. When fibroblast growth factors (Fgf) signaling is experimentally blocked by expression of a dominant-negative Fgf receptor, epicardial EMT and coronary neovascularization fail, prematurely arresting regeneration. Our findings reveal injury responses by myocardial and epicardial tissues that collaborate in an Fgf-dependent manner to achieve cardiac regeneration.  相似文献   
75.
76.
77.
78.
79.
Beginning in 2007, the largest human Q fever outbreak ever described occurred in the Netherlands. Dairy goats from intensive farms were identified as the source, amplifying Coxiella burnetii during gestation and shedding large quantities during abortions. It has been postulated that wild rodents are reservoir hosts from which C. burnetii can be transmitted to domestic animals and humans. However, little is known about the infection dynamics of C. burnetii in wild rodents. The aim of this study was to investigate whether brown rats (Rattus norvegicus) can be experimentally infected with C. burnetii and whether transmission to a cage mates occurs. Fourteen male brown rats (wild type) were intratracheally or intranasally inoculated with a Dutch C. burnetii isolate obtained from a goat. At 3 days postinoculation, a contact rat was placed with each inoculated rat. The pairs were monitored using blood samples and rectal and throat swabs for 8 weeks, and after euthanasia the spleens were collected. Rats became infected by both inoculation routes, and detection of C. burnetii DNA in swabs suggests that excretion occurred. However, based on the negative spleens in PCR and the lack of seroconversion, none of the contact animals was considered infected; thus, no transmission was observed. The reproduction ratio R(0) was estimated to be 0 (95% confidence interval = 0 to 0.6), indicating that it is unlikely that rats act as reservoir host of C. burnetii through sustained transmission between male rats. Future research should focus on other transmission routes, such as vertical transmission or bacterial shedding during parturition.  相似文献   
80.
Regeneration of amputated zebrafish fin rays from de novo osteoblasts   总被引:1,自引:0,他引:1  
Determining the cellular source of new skeletal elements is critical for understanding appendage regeneration in amphibians and fish. Recent lineage-tracing studies indicated that zebrafish fin ray bone regenerates through the dedifferentiation and proliferation of spared osteoblasts, with limited if any contribution from other cell types. Here, we examined the requirement for this mechanism by using genetic ablation techniques to destroy virtually all skeletal osteoblasts in adult zebrafish fins. Animals survived this injury and restored the osteoblast population within 2 weeks. Moreover, amputated fins depleted of osteoblasts regenerated new fin ray structures at rates indistinguishable from fins possessing a resident osteoblast population. Inducible genetic fate mapping confirmed that new bone cells do not arise from dedifferentiated osteoblasts under these conditions. Our findings demonstrate diversity in the cellular origins of appendage bone and reveal that de novo osteoblasts can fully support the regeneration of amputated zebrafish fins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号