首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   578篇
  免费   40篇
  国内免费   2篇
  620篇
  2023年   4篇
  2022年   6篇
  2021年   14篇
  2020年   11篇
  2019年   4篇
  2018年   8篇
  2017年   4篇
  2016年   16篇
  2015年   54篇
  2014年   41篇
  2013年   54篇
  2012年   55篇
  2011年   49篇
  2010年   36篇
  2009年   31篇
  2008年   42篇
  2007年   36篇
  2006年   27篇
  2005年   32篇
  2004年   22篇
  2003年   17篇
  2002年   21篇
  2001年   1篇
  2000年   2篇
  1999年   6篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1989年   4篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   4篇
排序方式: 共有620条查询结果,搜索用时 15 毫秒
71.
72.
Melioidosis is a disease of humans and animals that is caused by the saprophytic bacterium Burkholderia pseudomallei. Once thought to be confined to certain locations, the known presence of B. pseudomallei is expanding as more regions of endemicity are uncovered. There is no vaccine for melioidosis, and even with antibiotic administration, the mortality rate is as high as 40% in some regions that are endemic for the infection. Despite high levels of recombination, phylogenetic reconstruction of B. pseudomallei populations using whole-genome sequencing (WGS) has revealed surprisingly robust biogeographic separation between isolates from Australia and Asia. To date, there have been no confirmed autochthonous melioidosis cases in Australia caused by an Asian isolate; likewise, no autochthonous cases in Asia have been identified as Australian in origin. Here, we used comparative genomic analysis of 455 B. pseudomallei genomes to confirm the unprecedented presence of an Asian clone, sequence type 562 (ST-562), in Darwin, northern Australia. First observed in Darwin in 2005, the incidence of melioidosis cases attributable to ST-562 infection has steadily risen, and it is now a common strain in Darwin. Intriguingly, the Australian ST-562 appears to be geographically restricted to a single locale and is genetically less diverse than other common STs from this region, indicating a recent introduction of this clone into northern Australia. Detailed genomic and epidemiological investigations of new clinical and environmental B. pseudomallei isolates in the Darwin region and ST-562 isolates from Asia will be critical for understanding the origin, distribution, and dissemination of this emerging clone in northern Australia.  相似文献   
73.
74.
75.
76.
BackgroundIn Phase II/III randomized controlled clinical trials for the treatment of acute uncomplicated malaria, pyronaridine–artesunate demonstrated high efficacy and a safety profile consistent with that of comparators, except that asymptomatic, mainly mild-to-moderate transient increases in liver aminotransferases were reported for some patients. Hepatic safety, tolerability, and effectiveness have not been previously assessed under real-world conditions in Africa.Methods and findingsThis single-arm, open-label, cohort event monitoring study was conducted at 6 health centers in Cameroon, Democratic Republic of Congo, Gabon, Ivory Coast, and Republic of Congo between June 2017 and April 2019. The trial protocol as closely as possible resembled real-world clinical practice for the treatment of malaria at the centers. Eligible patients were adults or children of either sex, weighing at least 5 kg, with acute uncomplicated malaria who did not have contraindications for pyronaridine–artesunate treatment as per the summary of product characteristics. Patients received fixed-dose pyronaridine–artesunate once daily for 3 days, dosed by body weight, without regard to food intake. A tablet formulation was used in adults and adolescents and a pediatric granule formulation in children and infants under 20 kg body weight. The primary outcome was the hepatic event incidence, defined as the appearance of the clinical signs and symptoms of hepatotoxicity confirmed by a >2× rise in alanine aminotransferase/aspartate aminotransferase (ALT/AST) versus baseline in patients with baseline ALT/AST >2× the upper limit of normal (ULN). As a secondary outcome, this was assessed in patients with ALT/AST >2× ULN prior to treatment versus a matched cohort of patients with normal baseline ALT/AST. The safety population comprised 7,154 patients, of mean age 13.9 years (standard deviation (SD) 14.6), around half of whom were male (3,569 [49.9%]). Patients experienced 8,560 malaria episodes; 158 occurred in patients with baseline ALT/AST elevations >2×ULN. No protocol-defined hepatic events occurred following pyronaridine–artesunate treatment of malaria patients with or without baseline hepatic dysfunction. Thus, no cohort comparison could be undertaken. Also, as postbaseline clinical chemistry was only performed where clinically indicated, postbaseline ALT/AST levels were not systematically assessed for all patients. Adverse events of any cause occurred in 20.8% (1,490/7,154) of patients, most frequently pyrexia (5.1% [366/7,154]) and vomiting (4.2% [303/7,154]). Adjusting for Plasmodium falciparum reinfection, clinical effectiveness at day 28 was 98.6% ([7,369/7,746] 95% confidence interval (CI) 98.3 to 98.9) in the per-protocol population. There was no indication that comorbidities or malnutrition adversely affected outcomes. The key study limitation was that postbaseline clinical biochemistry was only evaluated when clinically indicated.ConclusionsPyronaridine–artesunate had good tolerability and effectiveness in a representative African population under conditions similar to everyday clinical practice. These findings support pyronaridine–artesunate as an operationally useful addition to the management of acute uncomplicated malaria.Trial registrationClinicalTrials.gov NCT03201770.

Gaston Tona Lutete and co-workers report on safety and effectiveness of the antimalarial drug pyronaridine-artesunate in African countries.  相似文献   
77.
Vegetation in tropical Asia is highly diverse due to large environmental gradients and heterogeneity of landscapes. This biodiversity is threatened by intense land use and climate change. However, despite the rich biodiversity and the dense human population, tropical Asia is often underrepresented in global biodiversity assessments. Understanding how climate change influences the remaining areas of natural vegetation is therefore highly important for conservation planning. Here, we used the adaptive Dynamic Global Vegetation Model version 2 (aDGVM2) to simulate impacts of climate change and elevated CO2 on vegetation formations in tropical Asia for an ensemble of climate change scenarios. We used climate forcing from five different climate models for representative concentration pathways RCP4.5 and RCP8.5. We found that vegetation in tropical Asia will remain a carbon sink until 2099, and that vegetation biomass increases of up to 28% by 2099 are associated with transitions from small to tall woody vegetation and from deciduous to evergreen vegetation. Patterns of phenology were less responsive to climate change and elevated CO2 than biomes and biomass, indicating that the selection of variables and methods used to detect vegetation changes is crucial. Model simulations revealed substantial variation within the ensemble, both in biomass increases and in distributions of different biome types. Our results have important implications for management policy, because they suggest that large ensembles of climate models and scenarios are required to assess a wide range of potential future trajectories of vegetation change and to develop robust management plans. Furthermore, our results highlight open ecosystems with low tree cover as most threatened by climate change, indicating potential conflicts of interest between biodiversity conservation in open ecosystems and active afforestation to enhance carbon sequestration.  相似文献   
78.
The identification of quantitative trait loci (QTL) such as height and their underlying causative variants is still challenging and often requires large sample sizes. In humans hundreds of loci with small effects control the heritable portion of height variability. In domestic animals, typically only a few loci with comparatively large effects explain a major fraction of the heritability. We investigated height at withers in Shetland ponies and mapped a QTL to ECA 6 by genome-wide association (GWAS) using a small cohort of only 48 animals and the Illumina equine SNP70 BeadChip. Fine-mapping revealed a shared haplotype block of 793 kb in small Shetland ponies. The HMGA2 gene, known to be associated with height in horses and many other species, was located in the associated haplotype. After closing a gap in the equine reference genome we identified a non-synonymous variant in the first exon of HMGA2 in small Shetland ponies. The variant was predicted to affect the functionally important first AT-hook DNA binding domain of the HMGA2 protein (c.83G>A; p.G28E). We assessed the functional impact and found impaired DNA binding of a peptide with the mutant sequence in an electrophoretic mobility shift assay. This suggests that the HMGA2 variant also affects DNA binding in vivo and thus leads to reduced growth and a smaller stature in Shetland ponies. The identified HMGA2 variant also segregates in several other pony breeds but was not found in regular-sized horse breeds. We therefore conclude that we identified a quantitative trait nucleotide for height in horses.  相似文献   
79.
To study the role of CD8 T cells in the control of varicella-zoster virus (VZV) reactivation, we developed multimeric major histocompatibility complexes to identify VZV-specific CD8 T cells. Potential HLA-A2 binding peptides from the putative immediate-early 62 protein (IE62) of VZV were tested for binding, and peptides with sufficient binding capacity were used to generate pentamers. Patients with VZV reactivation following stem cell transplantation were screened with these pentamers, leading to the identification of the first validated class I-restricted epitope of VZV. In 42% of HLA-A2 patients following VZV reactivation, these IE62-ALW-A2 T cells could be detected ex vivo.Varicella-zoster virus (VZV) infects about 95% of the population, persists throughout life, and may lead to herpes zoster when the virus reactivates. After T-cell-depleted allogeneic stem cell transplantation (TCD alloSCT), reactivation of the virus leads to considerable morbidity (10). Primary infection elicits both humoral and cellular responses, but cellular immunity is essential for preventing herpes zoster. The VZV genome comprises more than 70 unique open reading frames that encode proteins that are coordinately expressed during replication. The product of open reading frame 62, the immediate-early 62 (IE62) protein, is required for the initiation of VZV replication (9) and is expressed at high levels before viral replication has occurred (8). Previous research has demonstrated that IE62-specific T cells were detected after primary VZV infection and in immune subjects (2, 4). In addition, T cells recognizing various other IE proteins and glycoproteins of VZV, as demonstrated by gamma interferon (IFN-γ) production upon stimulation with peptides or lysate derived from these proteins, have been described (1, 6, 13). The VZV-specific memory T cells found in these studies were predominantly CD4 T cells, while no VZV-specific CD8 T cells were demonstrated without prior in vitro expansion, possibly due to the low frequency of VZV-specific CD8 T cells or to the low sensitivity of the screening methods used to detect CD8 T cells by IFN-γ production upon stimulation. Frey et al. described CD8 epitopes of IE62 detected following in vitro restimulation. However, the HLA restriction and specificity of these T cells were not confirmed (4). Due to the lack of validated VZV-derived immunodominant peptides for major histocompatibility complex (MHC) class I, the analysis of VZV-specific CD8 T-cell responses is hampered (14). To be able to analyze the role of CD8 T cells in VZV reactivation, we therefore set out to identify epitopes for VZV by using VZV-IE62-specific MHC class I peptide complexes.The predictive algorithms BIMAS (11) and SYFPEITHI (12) were used to select potential HLA-A2 binding peptides from the IE62 protein. Peptides with a score of ≥3 (BIMAS) or ≥20 (SYFPEITHI) were considered to have potentially significant binding affinity. The 81 resulting 9-mer peptides were synthesized and tested for binding affinity with the REVEAL MHC-peptide binding assay (ProImmune, Oxford, United Kingdom). HLA-A2 binding affinity was determined by the ability of the peptides to stabilize the HLA-peptide complex. Based on the binding affinity measurements, 34 high- to medium-affinity HLA-A2 binding peptides were selected and used to generate ProVE MHC pentamers (ProImmune, Oxford, United Kingdom). To enable screening of this large number of pentamers, the pentamers were divided into five pools, each containing six or seven pentamers. In the initial screening with pooled pentamers, four HLA-A2-positive patients were screened after a clinical diagnosis of VZV reactivation after TCD alloSCT. The presence of viral DNA in plasma at the time of clinical observations of VZV reactivation was confirmed by real-time PCR on plasma samples as previously described (7). After informed consent was obtained, peripheral blood mononuclear cells (PBMCs) were cryopreserved and thawed and 0.5 × 106 cells were incubated with pentamers at a concentration of 0.03 mg/ml for 10 min at room temperature in RPMI medium supplemented with 2% fetal bovine serum. After the cells were washed twice, 8 μl of FluoroTag-phycoerythrin (PE) was added for 20 min of incubation at 4°C and the cells were counterstained with CD4, CD40, and CD19-fluorescein isothiocyanate (FITC). Flow cytometric analysis was performed on a FACScalibur fluorescence-activated cell sorter (FACS; Becton-Dickinson [BD], San Jose, CA). In one of four patients, pentamer pool 6, containing pentamers 61, 62, 64, 65, 66, and 67, was positive (0.06% of CD8 T cells); no other positive signals were observed. Staining with the individual pentamers revealed that pentamer 66, containing the epitope ALWALPHAA derived from the IE62 protein of VZV (IE62-ALW-A2) was responsible for the positive signal (0.06% of CD8 T cells, Fig. Fig.1B1B).Open in a separate windowFIG. 1.Screening with pentamers containing VZV-derived immunogenic epitopes. PBMCs of a patient after VZV reactivation following TCD alloSCT were incubated with pentamers and then stained with FluoroTag-PE to detect the pentamer-positive cells (A and B) and counterstained with CD4-, CD40-, and CD19-FITC. Pentamer staining of the CD4-, CD40-, and CD19-negative cells is shown. (A) PBMCs stained with pentamer 67 containing the epitope ALPHAAAAV, showing no specific staining. (B) PBMCs stained with pentamer 66 containing the epitope ALWALPHAA, showing specific staining. IE62-ALW-A2-specific T-cell clones were sorted into a single cell per well and expanded nonspecifically. The clones were stained with an irrelevant tetramer (C) and the IE62-ALW-A2 tetramer (D) in combination with CD8-FITC. Clones 1 and 2 were stained with a Vβ kit (BD) to demonstrate that clone 1 (E) and clone 2 (F) express different T-cell receptors. The results demonstrate that we isolated different T-cell clones that specifically stain with the IE62-ALW-A2 tetramer.To confirm the specificity of the IE62-ALW-A2-specific T cells, the pentamer-positive T cells were sorted into a single cell per well with a FACSDiva (BD) and expanded as previously described (5). The expanded T-cell clones were labeled specifically with the IE62-ALW-A2 PE-conjugated tetramer that was constructed as previously described (3) (Fig. (Fig.1D),1D), and Vβ analysis with the T-cell receptor Vβ repertoire kit (BD) showed that at least two different T-cell clones were isolated, demonstrating the oligoclonal origin of IE62-ALW-A2-positive T cells (Fig. 1E and F). To assess the cytolytic capacity of IE62-ALW-A2 T cells, chromium release assays were performed as described earlier (5). 51Cr-labeled Epstein-Barr virus (EBV) lymphoblastoid cell lines (LCLs) loaded with the IE62-ALW peptide were incubated with IE62-ALW-A2 T cells for 4 h. As demonstrated in Fig. Fig.2A,2A, HLA-A2-positive EBV LCLs loaded with the IE62-ALW-A2 peptide were lysed by both T-cell clones, whereas unloaded EBV LCLs were not lysed. To determine the avidity of the T-cell clones, the IE62-ALW-A2 peptide was titrated on EBV LCLs, and after 24 h of coculture, supernatants were harvested and used to determine the IFN-γ production of the stimulated T cells by standard enzyme-linked immunosorbent assay. Half-maximum IFN-γ production of the T-cell clones was observed when the stimulator cells were loaded with 10 ng/ml peptide, indicative of high-avidity T-cell clones (Fig. (Fig.2B).2B). To determine whether the T cells recognized cells endogenously expressing the IE-62-encoding gene, COS-A2 cells were transfected with Lipofectamine (Invitrogen, Carlsbad, CA) by using pcDNA vectors coding for different VZV genes, which were kindly provided by E. Wiertz (Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands). The transfected COS-A2 cells were used 24 h after transfection as stimulator cells in this assay. After 24 h of coculture, supernatants were harvested and used to determine the IFN-γ production of the stimulated T cells. IE62-ALW-A2 T-cell clones produced IFN-γ in response to COS-A2 cells endogenously expressing the IE62 protein, as well as COS-A2 cells pulsed with the IE62-ALW-A2 peptide. No IFN-γ was produced when the COS-A2 cells were transfected with the IE63-encoding gene of VZV or pulsed with an irrelevant peptide (Fig. (Fig.2C2C).Open in a separate windowFIG. 2.IE62-ALW-A2 T cells recognize IE62-ALW-A2 peptide-loaded target cells and target cells endogenously expressing IE62. (A) The cytolytic activity of IE62-ALW-A2-positive T-cell clones 1 and 2 was analyzed with the 51Cr release assay. T cells were incubated for 4 h with IE62-ALW-A2 peptide (pep)-loaded or unloaded, HLA-A2-positive EBV LCLs at an effector-to-target ratio of 10:1. (B) IE62-ALW-A2 T-cell clone 1 was stimulated with HLA-A2-positive EBV LCLs loaded with different concentrations of the IE62-ALW-A2 peptide. Release of IFN-γ (pg/ml) after 24 h of stimulation is shown. (C) IE62-ALW-A2 T-cell clones 1 and 2 were stimulated with HLA-A2-positive COS-A2 cells, left untreated, or loaded with the IE62-ALW-A2 peptide or with the IE4-ALR-B8 peptide as an irrelevant peptide or transfected with the IE63-encoding gene (COS-A2-IE63) or the IE62-encoding gene (COS-A2-IE62). Release of IFN-γ (picograms per milliliter) after 24 h of stimulation is shown.To determine whether IE62-ALW-A2-specific T cells were present in healthy individuals, cryopreserved PBMCs from 18 healthy, VZV-seropositive, HLA-A2-positive individuals were screened with the PE-conjugated VZV tetramer. PBMCs were labeled with tetramers for 15 min at 37°C in RPMI medium without phenol supplemented with 2% fetal bovine serum, washed, and analyzed with a FACScalibur. In 3 of these 18 serologically VZV-positive individuals, IE62-ALW-A2 tetramer-positive T cells could be detected (range, 0.01 to 0.02% of CD8 T cells). These data demonstrate that IE62-ALW-A2-specific T cells can be observed and that the frequency of these T cells is low under steady-state conditions in immunocompetent persons.To assess the frequency of IE62-ALW-A2-specific T cells in a cohort of patient who suffered from VZV reactivation following TCD alloSCT, 19 HLA-A2-positive patients after VZV reactivation following TCD alloSCT were screened by using the IE62-ALW-A2 tetramer. We screened these patients at a median of 47 days after the clinical diagnosis of VZV reactivation. In 8 of these 19 patients, IE62-ALW-A2-specific T cells could be directly detected ex vivo (mean, 0.04% [range, 0.01 to 0.11%] of CD8 T cells), indicating that this epitope is recognized in 42% of the HLA-A2-positive patients during VZV reactivation (Table (Table1).1). In VZV-seronegative patients (six screened), no IE62-ALW-A2 tetramer-positive cells could be detected.

TABLE 1.

Presence of IE62-ALW-A2-specific T cells in HLA-A2 patients after VZV reactivation following TCD alloSCT
PatientNo. of days after:
% IE62-ALW-A2+ T cells (SD)
TCD alloSCTVZV reactivationBefore IVSaAfter IVSb
118046Negative0.22 (0.15)
2190380.03 (0.01)0.51 (0.21)
354531NegativeNegative
429452Negative0.12 (0.06)
58238NegativeNegative
618316Negative0.01 (0.01)
7176810.02 (0.01)0.44 (0.06)
899350.11 (0.02)0.22 (0.04)
960188Negative0.01 (0.01)
109563NegativeNegative
119083NegativeNegative
1217948NegativeNegative
131,22462NegativeNegative
14173200.03 (0.01)0.22 (0.12)
15514210.03 (0.01)NDc
16635400.02 (0.01)ND
171618NegativeNegative
18174480.01 (0.00)0.02 (0.01)
1992490.04 (0.01)0.06 (0.02)
Open in a separate windowaMean percentages of IE62-ALW-A2 tetramer-positive cells of CD8 T cells of three tetramer stainings performed on different days are shown.bPBMCs were in vitro stimulated (IVS) for 7 days with IE62-ALW-A2 peptide, and the mean percentages of tetramer-positive cells of three to six stimulations are shown. A negative result was defined as <0.01% of CD8+ T cells.cND, no PBMCs were available to do the analysis.To verify the presence of the IE62-ALW-A2-specific T cells in the patient and donor cohort and to investigate whether individuals negative for IE62-ALW-A2-specific T cells were unable to mount a response against the epitope or whether the frequency of IE62-ALW-A2-specific T cells was too low to detect by FACS, the presence of these T cells was further measured after in vitro stimulation. PBMCs were cultured at a concentration of 1 × 106/ml in 24-well plates in Iscove''s modified Dulbecco''s medium supplemented with 10% human serum in the presence of IE62-ALW peptide (1 μg/ml), interleukin-2 (IL-2; 50 IU/ml), and IL-15 (10 ng/ml). After stimulation for 7 days, the presence of IE62-ALW-A2-specific T cells was reassessed by tetramer labeling. These in vitro stimulations demonstrated that IE62-ALW-A2 CD8 T cells were detectable in another four patients and confirmed the presence of IE62-ALW-A2-specific T cells in eight patients and three healthy, VZV-seropositive individuals with ex vivo-detectable IE62-ALW-A2-specific T cells (Table (Table1;1; Fig. 3A to D). Thus, in 12 (63%) of 19 patients, IE62-ALW-A2 CD8 T cells could be detected either by direct tetramer labeling or after in vitro expansion, indicating that this HLA-A2-restricted epitope is commonly used in HLA-A2-positive individuals.Open in a separate windowFIG. 3.Detection and kinetics of IE62-ALW-A2-specific T cells. PBMCs with detectable IE62-ALW-A2 T cells (A, left side), a low level of detectable tetramer-positive cells (B, left side), or no detectable tetramer-positive cells (C and D, left side) were in vitro stimulated for 7 days with IE62-ALW-A2 peptide (I μg/ml) in the presence of IL-2 and IL-15 (A to D, right side). Cells were stained with CD4-FITC, CD40-FITC, and IE62-ALW-A2 tetramer, and the percentages of CD8+ T cells that were IE62-ALW-A2 tetramer positive are indicated. CD8+ T cells are defined as CD4 CD40 lymphocytes. (E) PBMCs of a patient during the course of VZV reactivation following TCD alloSCT were stained with the IE62-ALW-A2 tetramer in combination with CD8-FITC. The percentages of IE62-ALW-A2-specific CD8 T cells before, during, and after VZV reactivation are shown. In the box, the presence of viral DNA in peripheral blood is shown as measured by real-time PCR at various time points. The bold line illustrates the use of valaciclovir to treat the VZV reactivation.To study whether the immune response against the IE62-ALW-A2 epitope correlated with clinical reactivation, the percentage of IE62-ALW-A2-positive T cells was analyzed during the course of VZV reactivation in one patient. To determine the presence of viral DNA in plasma before and during the course of VZV reactivation, real-time PCR was performed on plasma samples derived at different time points. Six days prior to clinical signs of VZV reactivation, only 0.03% of the CD8 T cells were IE62-ALW-A2 specific. At 42 days after the onset of VZV reactivation, 0.23% of the CD8 T cells were IE62-ALW-A2 specific. After the VZV infection resolved, the percentage of IE62-ALW-A2-specific CD8 T cells declined to 0.09% at day 49 and 0.03% at day 145 after reactivation (Fig. (Fig.3D).3D). The T cells present at the peak of the response were predominantly HLA-DR positive, CD45RA negative, CCR7 negative, CD28 negative, and CD27 positive, consistent with an activated effector memory phenotype.In this study, we demonstrate that CD8 T cells specific for VZV are detectable without prior in vitro stimulation in patients with VZV reactivation following TCD alloSCT. We identified the ALWALPHAA peptide derived from the IE62-encoding gene of VZV as the first validated VZV-specific HLA class I-restricted immunogenic epitope by a pentamer-based epitope discovery method. The detection of the IE62-ALW peptide as an immunogenic peptide for VZV-specific CD8 T cells demonstrates the usefulness of this procedure for discovering new immunogenic virus- or tumor-specific epitopes. We demonstrated that, despite the low frequency, it is possible to detect VZV-specific CD8 T cells, allowing ex vivo analysis of the immune response to VZV infection, reactivation, and possibly VZV vaccination.  相似文献   
80.

Background

Inhibition of the epidermal growth factor receptor (EGFR) has shown clinical success in patients with advanced non-small cell lung cancer (NSCLC). Somatic mutations of EGFR were found in lung adenocarcinoma that lead to exquisite dependency on EGFR signaling; thus patients with EGFR-mutant tumors are at high chance of response to EGFR inhibitors. However, imaging approaches affording early identification of tumor response in EGFR-dependent carcinomas have so far been lacking.

Methodology/Principal Findings

We performed a systematic comparison of 3′-Deoxy-3′-[18F]-fluoro-L-thymidine ([18F]FLT) and 2-[18F]-fluoro-2-deoxy-D-glucose ([18F]FDG) positron emission tomography (PET) for their potential to identify response to EGFR inhibitors in a model of EGFR-dependent lung cancer early after treatment initiation. While erlotinib-sensitive tumors exhibited a striking and reproducible decrease in [18F]FLT uptake after only two days of treatment, [18F]FDG PET based imaging revealed no consistent reduction in tumor glucose uptake. In sensitive tumors, a decrease in [18F]FLT PET but not [18F]FDG PET uptake correlated with cell cycle arrest and induction of apoptosis. The reduction in [18F]FLT PET signal at day 2 translated into dramatic tumor shrinkage four days later. Furthermore, the specificity of our results is confirmed by the complete lack of [18F]FLT PET response of tumors expressing the T790M erlotinib resistance mutation of EGFR.

Conclusions

[18F]FLT PET enables robust identification of erlotinib response in EGFR-dependent tumors at a very early stage. [18F]FLT PET imaging may represent an appropriate method for early prediction of response to EGFR TKI treatment in patients with NSCLC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号