首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   30篇
  217篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   4篇
  2014年   4篇
  2013年   8篇
  2012年   12篇
  2011年   11篇
  2010年   4篇
  2009年   13篇
  2008年   10篇
  2007年   9篇
  2006年   9篇
  2005年   6篇
  2004年   10篇
  2003年   5篇
  2002年   11篇
  2001年   14篇
  2000年   12篇
  1999年   10篇
  1998年   9篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   6篇
  1990年   4篇
  1989年   5篇
  1988年   7篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有217条查询结果,搜索用时 15 毫秒
141.
An extensive taxonomic analysis of the bacterial strain Burkholderia sp. DBT1, previously isolated from an oil refinery wastewater drainage, is discussed here. This strain is capable of transforming dibenzothiophene through the 'destructive' oxidative pathway referred to as the Kodama pathway. Burkholderia DBT1 has also been proved to use fluorene, naphthalene and phenanthrene as carbon and energy sources, although growth on the first two compounds requires a preinduction step. This evidence suggests that the strain DBT1 exerts a versatile metabolism towards polycyclic aromatic hydrocarbons other than condensed thiophenes. Phylogenetic characterization using a polyphasic approach was carried out to clarify the actual taxonomic position of this strain, potentially exploitable in bioremediation. In particular, investigations were focused on the possible exclusion of Burkholderia sp. DBT1 from the Burkholderia cepacia complex. Analysis of the sequences of 16S, recA and gyrB genes along with the DNA-DNA hybridization procedure indicated that the strain DBT1 belongs to the species Burkholderia fungorum, suggesting the proposal of the taxonomic denomination B. fungorum DBT1.  相似文献   
142.
143.
Bacteria, molds, and toxins in water-damaged building materials.   总被引:6,自引:7,他引:6       下载免费PDF全文
Microbial toxins and eukaryotic cell toxicity from indoor building materials heavily colonized by fungi and bacteria were analyzed. The dominant colonizers at water-damaged sites of the building were Stachybotrys chartarum (10(3) to 10(5) visible conidia cm-2), Penicillium and Aspergillus species (10(4) CFU mg-1), gram-negative bacteria (10(4) CFU mg-1), and mycobacteria (10(3) CFU mg-1). The mycobacterial isolates were most similar to M. komossense, with 98% similarity of the complete 16S rDNA sequence. Limulus assay of water extracts prepared from a water-damaged gypsum liner revealed high contents of gram-negative endotoxin (17 ng mg-1 of E. coli lipopolysaccharide equivalents) and beta-D-glucan (210 ng mg-1 of curdlan equivalents). High-performance liquid chromatography analysis of the methanol extracts showed that the water-damaged gypsum liner also contained satratoxin (17 ng mg-1). This methanol-extracted substance was 200 times more toxic to rabbit skin and fetus feline lung cells than extract of gypsum liner sampled from a non-water-damaged site. The same extract contained toxin(s) that paralyzed the motility of boar spermatozoa at extremely low concentrations; the 50% effective concentration was 0.3 microgram of dry solids per ml. This toxicity was not explainable by the amount of bacterial endotoxin, beta-D-glucan, or satratoxin present in the same extract. The novel in vitro toxicity test that utilized boar spermatozoa as described in this article is convenient to perform and reproducible and was a useful tool for detecting toxins of microbial origin toward eukaryotic cells not detectable in building materials by the other methods.  相似文献   
144.

Background  

Here we describe a new technical solution for optimization of Pichia pastoris shake flask cultures with the example of production of stable human type II collagen. Production of recombinant proteins in P. pastoris is usually performed by controlling gene expression with the strong AOX1 promoter, which is induced by addition of methanol. Optimization of processes using the AOX1 promoter in P. pastoris is generally done in bioreactors by fed-batch fermentation with a controlled continuous addition of methanol for avoiding methanol toxification and carbon/energy starvation. The development of feeding protocols and the study of AOX1-controlled recombinant protein production have been largely made in shake flasks, although shake flasks have very limited possibilities for measurement and control.  相似文献   
145.
Toxic-metabolite-emitting microbes were isolated from the indoor environment of a building where the occupant was suffering serious building-related ill-health symptoms. Toxic substances soluble in methanol and inhibitory to spermatozoa at <10 μg (dry weight) ml−1 were found from six bacterial isolates and one fungus. The substances from isolates of Bacillus simplex and from isolates belonging to the actinobacterial genera Streptomyces and Nocardiopsis were mitochondriotoxic. These substances dissipated the mitochondrial membrane potential (Δψ) of boar spermatozoa. The substances from the Streptomyces isolates also swelled the mitochondria. The substances from isolates of Trichoderma harzianum Rifai and Bacillus pumilus damaged the cell membrane barrier function of sperm cells.  相似文献   
146.
The daily quality control of semen at a Finnish artificial insemination (AI) bull station is based on subjective motility and sperm morphology of young bulls entering the semen collection program. Semen quality dropped suddenly in autumn 1998. During 5 consecutive months, the number of rejected ejaculates and discarded frozen semen batches due to poor motility increased, and the number of all forms of abnormal spermatozoa increased. However, for the accepted ejaculates, a 60 day nonretum rate was normal. The summer of 1998 in Finland was rainy, and the hay used in the AI station was visibly moldy. Immunoassay and gas chromatography-mass spectrometry (GC-MS) detected Fusarium mycotoxins HT-2 and T-2, but no zearalenone in the hay. Occurrence of mycotoxins such as T-2 and HT-2 in the moldy hay coincided with, and may have been responsible for the impaired semen quality in AI bulls. This case report will draw the attention to the possible hazards when feeding moldy hay.  相似文献   
147.
We show that Rhodococcus chlorophenolicus PCP-I, a polychlorophenol degrader, also degrades various chlorine-substituted guaiacols (2-methoxyphenols) and syringols (2,6-dimethoxyphenols). The substrates investigated were tetrachloroguaiacol, 3,4,6- and 3,5,6-trichloroguaiacol, 3,5- and 3,6-dichloroguaiacol, trichlorosyringol, and 3,5-dichlorosyringol. The first step was a hydroxylation, probably in a position para to the preexisting hydroxyl. Tetrachloroguaiacol and trichlorosyringol, with a chlorine substituent in the para position, were both hydroxylated and dechlorinated. The optimum temperature for degradation of polychlorinated guaiacols and syringols was 37 to 41 degrees C. Degradation of polychlorinated phenols, guaiacols, and syringols by R. chlorophenolicus was inducible, and induction was controlled coordinately.  相似文献   
148.
149.
We investigated the metabolic route by which a lignin tetramer-degrading mixed bacterial culture degraded two tetrameric lignin model compounds containing β—O—4 and 5—5 biphenyl structures. The α-hydroxyl groups in the propane chain of both phenolic and nonphenolic tetramers were first oxidized symmetrically in two successive steps to give monoketones and diketones. These ketone metabolites were decomposed through Cα(=O)—Cβ cleavage, forming trimeric carboxyl acids which were further metabolized through another Cα(=O)—Cβ cleavage. Dehydrodiveratric acid, which resulted from the cleavage of the carbon bonds of the nonphenol tetramer, was demethylated twice. Four metabolites of the phenolic tetramer were purified and identified. All of these were stable compounds in sterile mineral medium, but were readily degraded by lignin tetramer-degrading bacteria along the same pathway as the phenol tetramer. No monoaromatic metabolites accumulated. All metabolites were identified by mass and proton magnetic resonance spectrometry. The metabolic route by which the mixed bacterial culture degraded tetrameric lignin model compounds was different from the route of the main ligninase-catalyzed Cα—Cβ cleavage by Phanerochaete chrysosporium.  相似文献   
150.
The Gram-negative strain S1, isolated from activated sludge, metabolized 4-chloro-2-methylphenol by an inducible pathway via a modifiedortho-cleavage route as indicated by a transiently secreted intermediate, identified as 2-methyl-4-carboxymethylenebut-2-en-4-olide by gas chromatography/mass spectrometry. Beside 4-chloro-2-methylphenol only 2,4-dichlorophenol and 4-chlorophenol were totally degraded, without an accumulation of intermediates. The chlorinated phenols tested induced activities of 2,4-dichlorophenol hydroxylase and catechol 1,2-dioxygenase type II. Phenol itself appeared to be degraded more efficiently via a separate, inducibleortho-cleavage pathway. The strain was characterized with respect to its physiological and chemotaxonomic properties. The fatty acid profile, the presence of spermidine as main polyamine, and of ubiquinone Q-10 allowed the allocation of the strain into the -2 subclass of theProteobacteria. Ochrobactrum anthropi was indicated by fatty acid analysis as the most similar organism, however, differences in a number of physiological features (e.g. absence of nitrate reduction) and pattern of soluble proteins distinguished strain S1 from this species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号