首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8663篇
  免费   966篇
  国内免费   1篇
  2022年   76篇
  2021年   149篇
  2020年   91篇
  2019年   114篇
  2018年   142篇
  2017年   156篇
  2016年   194篇
  2015年   336篇
  2014年   348篇
  2013年   440篇
  2012年   570篇
  2011年   601篇
  2010年   355篇
  2009年   331篇
  2008年   379篇
  2007年   356篇
  2006年   306篇
  2005年   317篇
  2004年   321篇
  2003年   277篇
  2002年   256篇
  2001年   201篇
  2000年   166篇
  1999年   160篇
  1998年   114篇
  1997年   90篇
  1996年   68篇
  1995年   70篇
  1994年   78篇
  1993年   91篇
  1992年   117篇
  1991年   110篇
  1990年   120篇
  1989年   118篇
  1988年   109篇
  1987年   111篇
  1986年   98篇
  1985年   125篇
  1984年   115篇
  1983年   110篇
  1982年   85篇
  1981年   70篇
  1980年   69篇
  1979年   90篇
  1978年   62篇
  1977年   78篇
  1976年   72篇
  1975年   56篇
  1974年   57篇
  1973年   72篇
排序方式: 共有9630条查询结果,搜索用时 15 毫秒
941.
942.
943.
Many flowering plants rely on pollinators, self-fertilization, or both for reproduction. We model the consequences of these features for plant population dynamics and mating system evolution. Our mating systems-based population dynamics model includes an Allee effect. This often leads to an extinction threshold, defined as a density below which population densities decrease. Reliance on generalist pollinators who primarily visit higher density plant species increases the extinction threshold, whereas autonomous modes of selfing decrease and can eliminate the threshold. Generalist pollinators visiting higher density plant species coupled with autonomous selfing may introduce an effect where populations decreasing in density below the extinction threshold may nonetheless persist through selfing. The extinction threshold and selfing at low density result in populations where individuals adopting a single reproductive strategy exhibit mating systems that depend on population density. The ecological and evolutionary analyses provide a mechanism where prior selfing evolves even though inbreeding depression is greater than one-half. Simultaneous consideration of ecological and evolutionary dynamics confirms unusual features (e.g., evolution into extinction or abrupt increases in population density) implicit in our separate consideration of ecological and evolutionary scenarios. Our analysis has consequences for understanding pollen limitation, reproductive assurance, and the evolution of mating systems.  相似文献   
944.
cDNAs encoding TCR alpha- and beta-chains specific for HLA-A2-restricted cancer-testis Ag NY-ESO-1 were cloned using a 5'RACE method from RNA isolated from a CTL generated by in vitro stimulation of PBMC with modified NY-ESO-1-specific peptide (p157-165, 9V). Functionality of the cloned TCR was confirmed by RNA electroporation of primary PBL. cDNA for these alpha- and beta-chains were used to construct a murine stem cell virus-based retroviral vector, and high titer packaging cell lines were generated. Gene transfer efficiency in primary T lymphocytes of up to 60% was obtained without selection using a method of precoating retroviral vectors onto culture plates. Both CD4(+) and CD8(+) T cells could be transduced at the same efficiency. High avidity Ag recognition was demonstrated by coculture of transduced lymphocytes with target cells pulsed with low levels of peptide (<20 pM). TCR-transduced CD4 T cells, when cocultured with NY-ESO-1 peptide pulsed T2 cells, could produce IFN-gamma, GM-CSF, IL-4, and IL-10, suggesting CD8-independent, HLA-A2-restricted TCR activation. The transduced lymphocytes could efficiently recognize and kill HLA-A2- and NY-ESO-1-positive melanoma cell lines in a 4-h (51)Cr release assay. Finally, transduced T cells could efficiently recognize NY-ESO-1-positive nonmelanoma tumor cell lines. These results strongly support the idea that redirection of normal T cell specificity by TCR gene transfer can have potential applications in tumor adoptive immunotherapy.  相似文献   
945.
The p53 protein is markedly up-regulated in a high proportion of human malignancies. Using an HLA-A2 transgenic mouse model, it was possible to isolate high-avidity murine CTLs that recognize class I-restricted human p53 epitopes. We isolated the alpha- and beta-chain of a TCR from a highly avid murine CTL clone that recognized the human p53(264-272) epitope. These genes were cloned into a retroviral vector that mediated high efficiency gene transfer into primary human lymphocytes. Efficiencies of >90% for gene transfer into lymphocytes were obtained without selection for transduced cells. The p53 TCR-transduced lymphocytes were able to specifically recognize with high-avidity, peptide-pulsed APCs as well as HLA-A2.1+ cells transfected with either wild-type or mutant p53 protein. p53 TCR-transduced cells demonstrated recognition and killing of a broad spectrum of human tumor cell lines as well as recognition of fresh human tumor cells. Interestingly, both CD8+ and CD4+ subsets were capable of recognizing and killing target cells, stressing the potential application of such a CD8-independent TCR molecule that can mediate both helper and cytotoxic responses. These results suggest that lymphocytes genetically engineered to express anti-p53 TCR may be of value for the adoptive immunotherapy of patients with a variety of common malignancies.  相似文献   
946.
Cytochrome P450s are heme-thiolate oxygenases involved in a wide number of reactions such as epoxidation, hydroxylation, and demethylation. Heterologously expressed eukaryotic P450s are potentially useful biocatalysts for stereospecific oxygenation reactions under mild conditions. Numerous factors, such as intracellular pH, cytochrome P450, cytochrome P450 reductase, NADPH, and oxygen concentration all influence the in vivo activity. To systematically examine these factors, we selected ferulate 5-hydroxylase (F5H), a plant P450, with the Saccharomyces cerevisiae WAT11 strain as an expression host. Two media compositions and two cultivation procedures were investigated to optimize the in vivo activity of F5H. We modified a previously published selective growth medium (Pompon et al. [1996] Methods Enzymol 272:51-64) that increased the specific growth rate and cell yield of the host strain. A cultivation procedure with separate growth and induction stages that each contained selective media resulted in a 45% increase of whole cell F5H specific activity. In a medium designed for simultaneous growth and induction, we observed a 2.6-fold higher specific F5H activity, but substantially lower cell yield. Surprisingly, in this medium the higher specific F5H activity did not correlate with a higher P450 concentration. The effects of addition of the first committed heme precursor, delta-aminolevulinic acid, and Fe(III) at the beginning of induction period were also studied for our two-stage procedure. A small, but significant (P < 0.05) increase in whole cell F5H activity was observed following ALA addition.  相似文献   
947.
948.
949.
Gene conversions and crossing over were analyzed along 10 intervals in a 405-kb region comprising nearly all of the left arm of chromosome VII in Saccharomyces cerevisiae. Crossover interference was detected in all intervals as measured by a reduced number of nonparental ditypes. We have evaluated interference between crossovers in adjacent intervals by methods that retain the information contained in tetrads as opposed to single segregants. Interference was seen between intervals when the distance in the region adjacent to a crossover was < approximately 35 cM (90 kb). At the met13 locus, which exhibits approximately 9% gene conversions, those gene conversions accompanied by crossing over exerted interference in exchanges in an adjacent interval, whereas met13 gene conversions without an accompanying exchange did not show interference. The pattern of exchanges along this chromosome arm can be represented by a counting model in which there are three nonexchange events between adjacent exchanges; however, maximum-likelihood analysis suggests that approximately 8-12% of the crossovers on chromosome VII arise by a separate, noninterfering mechanism.  相似文献   
950.
In most organisms, circadian oscillators regulate the daily rhythmic expression of clock-controlled genes (ccgs). However, little is known about the pathways between the circadian oscillator(s) and the ccgs. In Neurospora crassa, the frq, wc-1, and wc-2 genes encode components of the frq-oscillator. A functional frq-oscillator is required for rhythmic expression of the morning-specific ccg-1 and ccg-2 genes. In frq-null or wc-1 mutant strains, ccg-1 mRNA levels fluctuate near peak levels over the course of the day, whereas ccg-2 mRNA remains at trough levels. The simplest model that fits the above observations is that the frq-oscillator regulates a repressor of ccg-1 and an activator of ccg-2. We utilized a genetic selection for mutations that affect the regulation of ccg-1 and ccg-2 by the frq-oscillator. We find that there is at least one mutant strain, COP1-1 (circadian output pathway derived from ccg-1), that has altered expression of ccg-1 mRNA, but normal ccg-2 expression levels. However, the clock does not appear to simply regulate a repressor of ccg-1 and an activator of ccg-2 in two independent pathways, since in our selection we identified three mutant strains, COP1-2, COP1-3, and COP1-4, in which a single mutation in each strain affects the expression levels and rhythmicity of both ccg-1 and ccg-2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号