首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   10篇
  2022年   5篇
  2021年   5篇
  2020年   2篇
  2019年   5篇
  2018年   9篇
  2017年   4篇
  2016年   5篇
  2015年   8篇
  2014年   10篇
  2013年   17篇
  2012年   11篇
  2011年   18篇
  2010年   8篇
  2009年   9篇
  2008年   10篇
  2007年   6篇
  2006年   11篇
  2005年   6篇
  2004年   6篇
  2003年   5篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1978年   1篇
排序方式: 共有176条查询结果,搜索用时 31 毫秒
121.
TOP mRNAs are translationally controlled by mitogenic, growth, and nutritional stimuli through a 5'-terminal oligopyrimidine tract. Here we show that LiCl can alleviate the translational repression of these mRNAs when progression through the cell cycle is blocked at G(0), G(1)/S, or G(2)/M phases in different cell lines and by various physiological and chemical means. This derepressive effect of LiCl does not involve resumption of cell division. Unlike its efficient derepressive effect in mitotically arrested cells, LiCl alleviates inefficiently the repression of TOP mRNAs in amino acid-deprived cells and has no effect in lymphoblastoids whose TOP mRNAs are constitutively repressed even when they are proliferating. LiCl is widely used as a relatively selective inhibitor of glycogen synthase kinase-3. However, inhibition per se of this enzyme by more specific drugs failed to derepress the translation of TOP mRNAs, implying that relief of the translational repression of TOP mRNAs by LiCl is carried out in a glycogen synthase kinase-3-independent manner. Moreover, this effect is apparent, at least in some cell lines, in the absence of S6-kinase 1 activation and ribosomal protein S6 phosphorylation, thus further supporting the notion that translational control of TOP mRNAs does not rely on either of these variables.  相似文献   
122.
Translation of terminal oligopyrimidine tract (TOP) mRNAs, which encode multiple components of the protein synthesis machinery, is known to be controlled by mitogenic stimuli. We now show that the ability of cells to progress through the cell cycle is not a prerequisite for this mode of regulation. TOP mRNAs can be translationally activated when PC12 or embryonic stem (ES) cells are induced to grow (increase their size) by nerve growth factor and retinoic acid, respectively, while remaining mitotically arrested. However, both growth and mitogenic signals converge via the phosphatidylinositol 3-kinase (PI3-kinase)-mediated pathway and are transduced to efficiently translate TOP mRNAs. Translational activation of TOP mRNAs can be abolished by LY294002, a PI3-kinase inhibitor, or by overexpression of PTEN as well as by dominant-negative mutants of PI3-kinase or its effectors, PDK1 and protein kinase Balpha (PKBalpha). Likewise, overexpression of constitutively active PI3-kinase or PKBalpha can relieve the translational repression of TOP mRNAs in quiescent cells. Both mitogenic and growth signals lead to phosphorylation of ribosomal protein S6 (rpS6), which precedes the translational activation of TOP mRNAs. Nevertheless, neither rpS6 phosphorylation nor its kinase, S6K1, is essential for the translational response of these mRNAs. Thus, TOP mRNAs can be translationally activated by growth or mitogenic stimuli of ES cells, whose rpS6 is constitutively unphosphorylated due to the disruption of both alleles of S6K1. Similarly, complete inhibition of mammalian target of rapamycin (mTOR) and its effector S6K by rapamycin in various cell lines has only a mild repressive effect on the translation of TOP mRNAs. It therefore appears that translation of TOP mRNAs is primarily regulated by growth and mitogenic cues through the PI3-kinase pathway, with a minor role, if any, for the mTOR pathway.  相似文献   
123.
Red algae are extremely attractive for biotechnology because they synthesize accessory photosynthetic pigments (phycobilins and carotenoids), unsaturated fatty acids, and unique cell wall sulfated polysaccharides. We report a high-efficiency chloroplast transformation system for the unicellular red microalga Porphyridium sp. This is the first genetic transformation system for Rhodophytes and is based on use of a mutant form of the gene encoding acetohydroxyacid synthase [AHAS(W492S)] as a dominant selectable marker. AHAS is the target enzyme of the herbicide sulfometuron methyl, which effectively inhibits growth of bacteria, fungi, plants, and algae. Biolistic transformation of synchronized Porphyridium sp. cells with the mutant AHAS(W492S) gene that confers herbicide resistance gave a high frequency of sulfomethuron methyl-resistant colonies. The mutant AHAS gene integrated into the chloroplast genome by homologous recombination. This system paves the way for expression of foreign genes in red algae and has important biotechnological implications.  相似文献   
124.
OBJECTIVE: To improve the procedure for diagnosing vaginal melanoma with cytopathologic analysis of HMB-45. STUDY DESIGN: The study examined silver intensification of immunostaining of HMB-45 in nine cases of primary melanoma of the vagina and vulva using archival Papanicolaou-stained smears. RESULTS: All nine samples showed positive staining for HMB-45. Five cases showed intensive staining, two moderate and two weak. The positive staining was black in the cytoplasm of melanoma cells but was detected in neither the background nor normal squamous cells. Though destaining of Papanicolaou stain was not performed before immunostaining, the positivity of immunostaining was easily judged. CONCLUSION: After morphologic observation, immunocytochemical study of HMB-45 is possible even though time has passed since the cytologic specimen was obtained. When there is a suspicion of amelanotic melanoma or scantily pigmented melanoma of the vagina and vulva, cytogenesis with HMB-45 is helpful, especially because it involves little invasion.  相似文献   
125.
Constitutive expression of active Akt (Akttg) drives hyperplasia and hypertrophy of pancreatic β-cells, concomitantly with increased insulin secretion and improved glucose tolerance, and at a later stage the development of insulinoma. To determine which functions of Akt are mediated by ribosomal protein S6 (rpS6), an Akt effector, we generated mice that express constitutive Akt in β-cells in the background of unphosphorylatable ribosomal protein S6 (rpS6P-/-). rpS6 phosphorylation deficiency failed to block Akttg-induced hypertrophy and aneuploidy in β-cells, as well as the improved glucose homeostasis, indicating that Akt carries out these functions independently of rpS6 phosphorylation. In contrast, rpS6 phosphorylation deficiency efficiently restrained the reduction in nuclear localization of the cell cycle inhibitor p27, as well as the development of Akttg-driven hyperplasia and tumor formation in β-cells. In vitro experiments with Akttg and rpS6P-/-;Akttg fibroblasts demonstrated that rpS6 phosphorylation deficiency leads to reduced translation fidelity, which might underlie its anti-tumorigenic effect in the pancreas. However, the role of translation infidelity in tumor suppression cannot simply be inferred from this heterologous experimental model, as rpS6 phosphorylation deficiency unexpectedly elevated the resistance of Akttg fibroblasts to proteotoxic, genotoxic as well as autophagic stresses. In contrast, rpS6P-/- fibroblasts exhibited a higher sensitivity to these stresses upon constitutive expression of oncogenic Kras. The latter result provides a possible mechanistic explanation for the ability of rpS6 phosphorylation deficiency to enhance DNA damage and protect mice from Kras-induced neoplastic transformation in the exocrine pancreas. We propose that Akt1 and Kras exert their oncogenic properties through distinct mechanisms, even though both show addiction to rpS6 phosphorylation.  相似文献   
126.
127.
By elaborating upon the idea of “relational assimilation”, Tomas Jimenez alters the dominant lens through which social scientists, and especially sociologists, have understood the concept of assimilation and the effects of immigration. In this highly readable and thoughtful book, we are asked to conceive of this kind of assimilation as one which involves “the give-and-take of adjustment”, not just a one-way route by which “newcomers” must adapt to settings populated by “established” members of the population. According to the author, ongoing forms of immigration and its resulting diversity actually change the regional self-understandings of those who are already living in those settings.  相似文献   
128.
We studied changes in the number of sperm within two kinds of female sperm-storage organ in the damselfly Ischnura senegalensis (Odonata: Coenagrionidae): the bursa copulatrix and the spermatheca. We counted the number of sperm within each storage organ and tested their viability after a single copulation in female damselflies kept for seven days with and without oviposition. We also counted sperm and tested their viability in females that underwent an interrupted second copulation after the sperm-removal stage, and after subsequent oviposition. Our results showed that the bursa copulatrix and spermatheca have different sperm storage roles. Immediately after copulation, most eggs appear to have been fertilized with bursal sperm, which were positioned near the fertilization point. By seven days after copulation, a greater proportion of spermathecal sperm were used for fertilization, as the number of bursal sperm had decreased. We hypothesize that female damselflies use the spermatheca for long-term storage and the bursa copulatrix for short-term storage: bursal sperm are more likely to be used for fertilization but may have a higher risk of mortality due to sperm removal by a competing male and/or sperm expelling by the female, whereas spermathecal sperm are safer but will be used for fertilization only after their release from the spermatheca.  相似文献   
129.
Cells must adjust their gene expression in order to compete in a constantly changing environment. Two alternative strategies could in principle ensure optimal coordination of gene expression with physiological requirements. First, characters of the internal physiological state, such as growth rate, metabolite levels, or energy availability, could be feedback to tune gene expression. Second, internal needs could be inferred from the external environment, using evolutionary-tuned signaling pathways. Coordination of ribosomal biogenesis with the requirement for protein synthesis is of particular importance, since cells devote a large fraction of their biosynthetic capacity for ribosomal biogenesis. To define the relative contribution of internal vs. external sensing to the regulation of ribosomal biogenesis gene expression in yeast, we subjected S. cerevisiae cells to conditions which decoupled the actual vs. environmentally-expected growth rate. Gene expression followed the environmental signal according to the expected, but not the actual, growth rate. Simultaneous monitoring of gene expression and growth rate in continuous cultures further confirmed that ribosome biogenesis genes responded rapidly to changes in the environments but were oblivious to longer-term changes in growth rate. Our results suggest that the capacity to anticipate and prepare for environmentally-mediated changes in cell growth presented a major selection force during yeast evolution.  相似文献   
130.
Inbreeding can have deleterious effects on individual or population fitness. To avoid fitness reduction, individuals may adopt behavioral or physiological mechanisms to reduce their investment in the production of offspring with genetically similar mates. We examined whether insemination by inbred males introduced more dead sperm than insemination by wild males by counting sperm in female Ischnura senegalensis (Rambur) sperm storage organs. If inbred males inseminated fewer or lower-quality sperm, females would avoid inferior sperm. Our results revealed three features of damselfly inbreeding: insemination failed in a larger proportion of inbred pairs than in wild pairs, inbred pairs showed significantly reduced fertility, and the numbers of live and dead sperm in an inbred female’s sperm storage organs did not differ from those in wild females. These results suggested that neither sperm quantity nor sperm quality was responsible for low fertility to a significant extent, but some kind of female quality, such as sperm usage or storing ability, was. Although inbred pairs had lower fertility, there were no significant differences between inbred and wild pairs in the total numbers of live or dead sperm. It thus seemed that female choice at the insemination stage was responsible for low fertility rather than sperm quantity or quality measured by live-to-dead ratio.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号