首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   928篇
  免费   79篇
  1007篇
  2022年   4篇
  2021年   14篇
  2020年   5篇
  2019年   7篇
  2018年   8篇
  2017年   9篇
  2016年   11篇
  2015年   31篇
  2014年   39篇
  2013年   41篇
  2012年   59篇
  2011年   59篇
  2010年   48篇
  2009年   48篇
  2008年   55篇
  2007年   63篇
  2006年   64篇
  2005年   66篇
  2004年   48篇
  2003年   63篇
  2002年   59篇
  2001年   9篇
  2000年   9篇
  1999年   7篇
  1998年   13篇
  1997年   10篇
  1996年   12篇
  1995年   15篇
  1994年   9篇
  1993年   9篇
  1992年   15篇
  1991年   5篇
  1990年   7篇
  1989年   6篇
  1988年   7篇
  1987年   4篇
  1986年   5篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   8篇
  1980年   6篇
  1979年   6篇
  1978年   6篇
  1977年   6篇
  1976年   5篇
  1975年   2篇
  1971年   2篇
  1964年   1篇
排序方式: 共有1007条查询结果,搜索用时 0 毫秒
91.
The tropical forests of the Congo Basin and Gulf of Guinea harbor some of the greatest terrestrial and aquatic biological diversity in the world. However, our knowledge of the rich biological diversity of this region and the evolutionary processes that have shaped it remains limited, as is our understanding of the capacity for species to adapt or otherwise respond to current and projected environmental change. In this regard, research efforts are needed to increase current scientific knowledge of this region's biodiversity, identify the drivers of past diversification, evaluate the potential for species to adapt to environmental change and identify key populations for future conservation. Moreover, when evolutionary research is combined with ongoing environmental monitoring efforts, it can also provide an important set of tools for assessing and mitigating the impacts of development activities. Building on a set of recommendations developed at an international workshop held in Gabon in 2011, we highlight major areas for future evolutionary research that could be directly tied to conservation priorities for the region. These research priorities are centered around five disciplinary themes: (1) documenting and discovering biodiversity; (2) identifying drivers of evolutionary diversification; (3) monitoring environmental change; (4) understanding community and ecosystem level processes; (5) investigating the ecology and epidemiology of disease from an evolutionary perspective (evolutionary epidemiology). Furthermore, we also provide an overview of the needs and priorities for biodiversity education and training in Central Africa.  相似文献   
92.
93.

Purpose  

The assessment of biofuels has until now mainly focused on energy demand and greenhouse gas emissions. Only little attention has been given to other impacts, although the general importance of water use for the life cycle assessment (LCA) of agricultural products has been recognized in recent publications. The aim of this work is to assess in detail the water consumption along a biofuel production chain taking into account irrigation efficiencies, levels of water scarcity, and type of feedstock, and to integrate those results in a full LCA. Furthermore, we compare the results for biofuels from various feedstocks and regions with conventional petrol.  相似文献   
94.
Oxidative stress is defined as an imbalance between the production of reactive oxygen species (ROS) and the antioxidant capacity of the cell. For long, ROS have been considered as harmful by-products of the normal aerobic metabolism process of the mitochondria, implicated in a large variety of diseases. But there are now growing evidences that controlled ROS production also play physiological roles especially in regulating cell redox homeostasis and cell signaling. Biological ROS effects are now well documented. Data show that living organisms have not only adapted themselves to coexist with free radicals but have also developed mechanisms to use them advantageously. However their main sources and mechanisms of action remain poorly described. This review focuses on the main properties of ROS and their paradoxical effects.  相似文献   
95.
Dispiro 1,2,4-trioxanes and 1,2,4,5-tetraoxanes had superior efficacy against Fasciola hepatica than the corresponding ozonides (1,2,4-trioxolanes). For highest efficacy, spiroadamantane and carboxymethyl substructures were required. Three compounds completely cured F. hepatica-infected mice at single oral doses of 50mg/kg and two were partially curative at single doses of 25mg/kg.  相似文献   
96.
97.
Soil salinity is one of the major abiotic stress limiting crop productivity and the geographical distribution of many important crops worldwide. To gain a better understanding of the salinity stress responses at physiological and molecular level in cultivated tomato (Solanum lycopersicum. cv. Supermarmande), we carried out a comparative physiological and proteomic analysis. The tomato seedlings were cultivated using a hydroponic system in the controlled environment growth chamber. The salt stress (NaCl) was applied (0, 50, 100, 150 and 200?mM), and maintained for 14 days. Salt treatment induced a plant growth reduction estimated as fresh-dry weight. Photosynthetic pigments (chlorophyll a, b) content of NaCl-treated tomato plants was significantly decreased as the salinity level increased. Proline accumulation levels in leaf and root tissues increased significantly with increasing NaCl concentration. Relative electrolyte leakage known as an indicator of membrane damage caused by salt stress was increased proportionally according to the NaCl concentrations. Roots of control and salt-stressed plants were also sampled for phenol protein extraction. Proteins were separated by two-dimensional gel electrophoresis (2-DGE). Several proteins showed up- and downregulation during salt stress. MALDI-TOF/MS analysis and database searching of some of the identified proteins indicated that the proteins are known to be in a wide range of physiological processes, that is, energy metabolism, ROS (reactive oxygen species) scavenging and detoxification, protein translation, processing and degradation, signal transduction, hormone and amino acid metabolism, and cell wall modifications. All proteins might work cooperatively to reestablish cellular homeostasis under salt stress, water deficiency, and ionic toxicity.  相似文献   
98.
99.
Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation   总被引:1,自引:0,他引:1  
The energy requirements of the brain are very high, and tight regulatory mechanisms operate to ensure adequate spatial and temporal delivery of energy substrates in register with neuronal activity. Astrocytes-a type of glial cell-have emerged as active players in brain energy delivery, production, utilization, and storage. Our understanding of neuroenergetics is rapidly evolving from a "neurocentric" view to a more integrated picture involving an intense cooperativity between astrocytes and neurons. This review focuses on the cellular aspects of brain energy metabolism, with a particular emphasis on the metabolic interactions between neurons and astrocytes.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号