首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   933篇
  免费   79篇
  1012篇
  2022年   4篇
  2021年   14篇
  2020年   5篇
  2019年   7篇
  2018年   8篇
  2017年   9篇
  2016年   11篇
  2015年   30篇
  2014年   39篇
  2013年   43篇
  2012年   59篇
  2011年   59篇
  2010年   48篇
  2009年   48篇
  2008年   55篇
  2007年   65篇
  2006年   64篇
  2005年   67篇
  2004年   48篇
  2003年   63篇
  2002年   59篇
  2001年   9篇
  2000年   9篇
  1999年   8篇
  1998年   13篇
  1997年   12篇
  1996年   13篇
  1995年   15篇
  1994年   9篇
  1993年   9篇
  1992年   15篇
  1991年   5篇
  1990年   7篇
  1989年   6篇
  1988年   7篇
  1987年   4篇
  1986年   5篇
  1985年   4篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   8篇
  1980年   6篇
  1979年   5篇
  1978年   6篇
  1977年   5篇
  1976年   5篇
  1975年   2篇
  1971年   2篇
  1964年   1篇
排序方式: 共有1012条查询结果,搜索用时 0 毫秒
101.
Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc). MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In Gram-negative bacteria, ∼30–60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl), which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl). Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters). Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships.  相似文献   
102.
Toxic heavy metals constitute a worldwide environmental pollution problem. Bioremediation technologies represent efficient alternatives to the classic cleaning-up of contaminated soil and ground water. Most toxic heavy metals such as chromium are less soluble and toxic when reduced than when oxidized. Sulfate-reducing bacteria (SRB) are able to reduce heavy metals by a chemical reduction via the production of H2S and by a direct enzymatic process involving hydrogenases and c3 cytochromes. We have previously reported the effects of chromate [Cr(VI)] on SRB bioenergetic metabolism and the molecular mechanism of the metal reduction by polyhemic cytochromes. In the current work, we pinpoint the bacteria–metal interactions using Desulfovibrio vulgaris strain Hildenborough as a model. The bacteria were grown in the presence of high Cr(VI) concentration, where they accumulated precipitates of a reduced form of chromium, trivalent chromium [Cr(III)], on their cell surfaces. Moreover, the inner and outer membranes exhibited precipitates that shared the spectroscopic signature of trivalent chromium. This subcellular localization is consistent with enzymatic metal reduction by cytochromes and hydrogenases. Regarding environmental significance, our findings point out the Cr(VI) immobilization mechanisms of SRB; suggesting that SRB are highly important in metal biogeochemistry.  相似文献   
103.
BackgroundSeveral adult stem cell populations exhibit myogenic regenerative potential, thus representing attractive candidates for therapeutic approaches of neuromuscular diseases such as Duchenne Muscular Dystrophy (DMD). We have recently shown that systemic delivery of MuStem cells, skeletal muscle-resident stem cells isolated in healthy dog, generates the remodelling of muscle tissue and gives rise to striking clinical benefits in Golden Retriever Muscular Dystrophy (GRMD) dog. This global effect, which is observed in the clinically relevant DMD animal model, leads us to question here the molecular pathways that are impacted by MuStem cell transplantation. To address this issue, we compare the global gene expression profile between healthy, GRMD and MuStem cell treated GRMD dog muscle, four months after allogenic MuStem cell transplantation.ResultsIn the dystrophic context of the GRMD dog, disease-related deregulation is observed in the case of 282 genes related to various processes such as inflammatory response, regeneration, calcium ion binding, extracellular matrix organization, metabolism and apoptosis regulation. Importantly, we reveal the impact of MuStem cell transplantation on several molecular and cellular pathways based on a selection of 31 genes displaying signals specifically modulated by the treatment. Concomitant with a diffuse dystrophin expression, a histological remodelling and a stabilization of GRMD dog clinical status, we show that cell delivery is associated with an up-regulation of genes reflecting a sustained enhancement of muscle regeneration. We also identify a decreased mRNA expression of a set of genes having metabolic functions associated with lipid homeostasis and energy. Interestingly, ubiquitin-mediated protein degradation is highly enhanced in GRMD dog muscle after systemic delivery of MuStem cells.ConclusionsOverall, our results provide the first high-throughput characterization of GRMD dog muscle and throw new light on the complex molecular/cellular effects associated with muscle repair and the clinical efficacy of MuStem cell-based therapy.  相似文献   
104.
Nineteen E. faecium strains isolated from chicken caecum samples, collected in slaughterhouses and highly resistant to vancomycin or gentamicin, were coresistant to erythromycin, and/or tetracyclines, and/or streptogramins, and/or avilamycin. Multiple antibiotic resistance was related to the presence in various combinations of aac(6')-aph(2"), erm(B), emtA, mef(A), tet(L), tet(M), and vanA genes.  相似文献   
105.
106.
Intracellular trafficking and spatial dynamics of membrane receptors critically regulate receptor function. Using microscopic and subcellular fractionation analysis, we studied the localization of the murine G protein-coupled receptor G2A (muG2A). Evaluating green fluorescent protein-tagged, exogenously expressed as well as the endogenous muG2A, we observed that this receptor was spontaneously internalized and accumulated in endosomal compartments, whereas its surface expression was enhanced and stabilized by lysophosphatidylcholine (LPC) treatment. Monensin, a general inhibitor of recycling pathways, blocked LPC-regulated surface localization of muG2A as well as muG2A-dependent extracellular signal-regulated kinase (ERK) activation and cell migration induced by LPC treatment. Mutation of the conserved DRY motif (R-->A) enhanced the surface expression of muG2A, resulting in its resistance to monensin inhibition of ERK activation. Our data suggest that intracellular sequestration and surface expression regulated by LPC, rather than direct agonistic activity control the signaling responses of murine G2A toward LPC.  相似文献   
107.
Chelation therapy is thought to not only remove contaminating metals but also to decrease free radical production. EDTA chelation therapy, containing high doses of vitamin C as an antioxidant, is often used in the treatment of diseases such as diabetes and cardiovascular diseases but the effectiveness of this treatment may be variable and its efficacy has not been demonstrated conclusively. The objective of this work was to determine if the vitamin C added to standard chelation therapy cocktails was prooxidant. We administered a standard EDTA cocktail solution with or without 5 g of sodium ascorbate. One hour following the standard chelation therapy, there were highly significant prooxidant effects on lipids, proteins, and DNA associated with decreased activities of RBC glutathione peroxidase and superoxide dismutase while in the absence of sodium ascorbate, there were no acute signs of oxidative damage. After 16 sessions of standard chelation therapy, the acute prooxidant effects of vitamin C remained, but, even in the absence of nutrient supplements, there were beneficial long-term antioxidant effects of chelation therapy and plasma peroxide levels decreased. In conclusion, multiple sessions of EDTA chelation therapy protect lipids against oxidative damage. However, standard high amounts of vitamin C added to EDTA chelation solutions also display short term prooxidant effects. The added benefits of lower levels of vitamin C in chelation therapy need to be documented.  相似文献   
108.
Proteomic analysis of bacterial pathogens isolated from in vivo sources, such as infected tissues, provides many challenges not the least of which is the limited quantity of sample available for analysis. It is, therefore, highly desirable to develop a one-step cellular lysis and protein solubilization method that minimizes protein losses and allows the maximum possible coverage of the proteome. Here, we have used standard sample buffer constituents including urea, thiourea and DTT, but varied the detergent composition of the buffers in order to achieve the best quality of gels and the greatest spot resolution. We found that the most efficient solubilizing solution in this case consisted of 7 M urea, 2 M thiourea, 1% DTT, 0.5% amidosulfobetaine-14 (ASB-14) and 4% 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). Inclusion of low levels of ASB-14 in solutions allowed visualization of a subset of 24 new protein spots in the Live Vaccine Strain (LVS) of Francisella tularensis and 21 spots in a virulent A-strain of the pathogen. Further investigation showed that 15 of the 24 enriched LVS spots were membrane or membrane-associated proteins suggesting that the optimized lysis and solubilization solution aids in the detection of more hydrophobic proteins. This methodology is now being applied to the analysis of Francisella obtained from in vivo sources.  相似文献   
109.
Many studies that aim to characterize the proteome structurally or functionally require the production of pure protein in a high-throughput format. We have developed a fast and flexible integrated system for cloning, protein expression in Escherichia coli, solubility screening and purification that can be completely automated in a 96-well microplate format. We used recombination cloning in custom-designed vectors including (i) a (His)(6) tag-encoding sequence, (ii) a variable solubilizing partner gene, (iii) the DNA sequence corresponding to the TEV protease cleavage site, (iv) the gene (or DNA fragment) of interest, (v) a suppressible amber stop codon, and (vi) an S.tag peptide-encoding sequence. First, conditions of bacterial culture in microplates (250 microL) were optimized to obtain expression and solubility patterns identical to those obtained in a 1-L flask (100-mL culture). Such conditions enabled the screening of various parameters in addition to the fusion partners (E. coli strains, temperature, inducer...). Second, expression of fusion proteins in amber suppressor strains allowed quantification of soluble and insoluble proteins by fluorescence through the detection of the S.tag. This technique is faster and more sensitive than other commonly used methods (dot blots, Western blots, SDS-PAGE). The presence of the amber suppressor tRNA was shown to affect neither the expression pattern nor the solubility of the target proteins. Third, production of the most interesting soluble fusion proteins, as detected by our screening method, could be performed in nonsuppressor strains. After cleavage with the TEV protease, the target proteins were obtained in a native form with a unique additional N-terminal glycine.  相似文献   
110.
We describe the onset and the expansion of stromal cell-derived factor 1 (SDF-1) expression in the intermediate zone of embryonic mouse cerebral cortex between embryonic days (E)11.5 and 18.5, and on postnatal day 1. Using in situ hybridisation with a digoxigenin-labeled probe, SDF-1 mRNA was detectable by E 12.5 in a small area of the intermediate zone just dorsal to the pallial-subpallial boundary. During the following days, SDF-1 expression extended towards the dorso-lateral pallium, and then the hippocampus and cortical hem. The position of the SDF-1 positive cells within the intermediate zone was closely correlated with the stream of tangentially migrating cells carrying the polysialylated form of neural cell adhesion molecule (PSA-NCAM). However, whereas these cells form a ventro-dorsal stream passing from the subpallium into the pallium, SDF-1 was not detectable on the ventral side of the pallial-subpallial boundary at any of the developmental stages studied. By E 16.5, the intensity of SDF-1 hybridisation signal in the intermediate zone decreased, to become undetectable by E 18.5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号