首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1101篇
  免费   98篇
  2021年   15篇
  2020年   5篇
  2019年   7篇
  2018年   10篇
  2017年   11篇
  2016年   15篇
  2015年   33篇
  2014年   43篇
  2013年   51篇
  2012年   64篇
  2011年   76篇
  2010年   51篇
  2009年   52篇
  2008年   61篇
  2007年   68篇
  2006年   66篇
  2005年   72篇
  2004年   53篇
  2003年   69篇
  2002年   64篇
  2001年   13篇
  2000年   15篇
  1999年   12篇
  1998年   16篇
  1997年   10篇
  1996年   12篇
  1995年   20篇
  1994年   9篇
  1993年   9篇
  1992年   21篇
  1991年   10篇
  1990年   11篇
  1989年   10篇
  1988年   11篇
  1987年   9篇
  1986年   7篇
  1985年   8篇
  1984年   10篇
  1983年   7篇
  1982年   7篇
  1981年   8篇
  1980年   8篇
  1979年   12篇
  1978年   11篇
  1977年   10篇
  1976年   7篇
  1972年   4篇
  1971年   4篇
  1969年   3篇
  1964年   3篇
排序方式: 共有1199条查询结果,搜索用时 15 毫秒
51.
KplE1 is one of the 10 prophage regions of Escherichia coli K12, located at 2464 kb on the chromosome. KplE1 is defective for lysis, but it is fully competent for excisive recombination. In this study, we have mapped the binding sites of the recombination proteins, namely IntS, TorI, and IHF on attL and attR, and the organization of these sites suggests that the intasome is architecturally different from the lambda canonical form. We also measured the relative contribution of these proteins to both excisive and integrative recombination by using a quantitative in vitro assay. These experiments show a requirement of the TorI excisionase for excisive recombination and of the IntS integrase for both integration and excision. Moreover, we observed a strong influence of the supercoiled state of the substrates. The KplE1 recombination module, composed of the integrase and excisionase genes together with the attL and attR DNA regions, is highly similar to that of several phages infecting various E. coli strains as well as Shigella flexneri and Shigella sonnei. The in vitro recombination data reveal that HK620 and KplE1 att sequences are exchangeable. This study thus defines a new site-specific recombination module, and implications for the mechanism and regulation of recombination are discussed.  相似文献   
52.
53.
Axolotls (urodele amphibians) have the unique ability, among vertebrates, to perfectly regenerate many parts of their body including limbs, tail, jaw and spinal cord following injury or amputation. The axolotl limb is the most widely used structure as an experimental model to study tissue regeneration. The process is well characterized, requiring multiple cellular and molecular mechanisms. The preparation phase represents the first part of the regeneration process which includes wound healing, cellular migration, dedifferentiation and proliferation. The redevelopment phase represents the second part when dedifferentiated cells stop proliferating and redifferentiate to give rise to all missing structures. In the axolotl, when a limb is amputated, the missing or wounded part is regenerated perfectly without scar formation between the stump and the regenerated structure. Multiple authors have recently highlighted the similarities between the early phases of mammalian wound healing and urodele limb regeneration. In mammals, one very important family of growth factors implicated in the control of almost all aspects of wound healing is the transforming growth factor-beta family (TGF-beta). In the present study, the full length sequence of the axolotl TGF-beta1 cDNA was isolated. The spatio-temporal expression pattern of TGF-beta1 in regenerating limbs shows that this gene is up-regulated during the preparation phase of regeneration. Our results also demonstrate the presence of multiple components of the TGF-beta signaling machinery in axolotl cells. By using a specific pharmacological inhibitor of TGF-beta type I receptor, SB-431542, we show that TGF-beta signaling is required for axolotl limb regeneration. Treatment of regenerating limbs with SB-431542 reveals that cellular proliferation during limb regeneration as well as the expression of genes directly dependent on TGF-beta signaling are down-regulated. These data directly implicate TGF-beta signaling in the initiation and control of the regeneration process in axolotls.  相似文献   
54.
55.
Macroautophagy (hereafter referred to as autophagy) is the major degradative pathway of long-lived proteins and organelles that fulfils key functions in cell survival, tissue remodeling and tumor suppression. Consistently, alterations in autophagy have been involved in a growing list of pathologies including toxic injury, infections, neurodegeneration, myopathies and cancers. Although critical, the molecular mechanisms that control autophagy remain largely unknown. We have recently exploited the disruption of autophagy by environmental carcinogens as a powerful model to uncover the underlying signaling pathways. Our work published in Cancer Research revealed that the sustained activation of the MAPK ERK pathway by the carcinogen Lindane or the MEK1(+) oncogene alters autophagy selectively at the maturation step resulting in the accumulation of large defective autolysosomes. Consistent with our findings, a similar defect is observed with other common xenobiotics such as dichlorodiphenyltrichloroethane and biphenol A that specifically activate ERK. Conversely, Pentachlorophenol that activates both ERK and p38, fails to induce autophagic vacuolation. In addition, evidence is provided that abrogation of p38 by SB203580 is sufficient to interfere with the normal autophagic maturation step. Altogether, these findings underscore the critical role played by MAPK ERK and p38 in the tight control of the autophagy process at the maturation step.  相似文献   
56.
Fractal properties of DNA walks   总被引:3,自引:0,他引:3  
We describe two dimensional DNA walks, and analyze their fractal properties. We show results for the complete genome of S. cerevisiae. We find that the mean square deviation of the walks is superdifussive, corresponding to a fractal structure of dimension lower than two. Furthermore, the coding part of the genome seems to have smaller fractal dimension, and longer correlations, than noncoding parts.  相似文献   
57.
58.
The mapping resolution of the physical map for chicken Chromosome 4 (GGA4) was improved by a combination of radiation hybrid (RH) mapping and bacterial artificial chromosome (BAC) mapping. The ChickRH6 hybrid panel was used to construct an RH map of GGA4. Eleven microsatellites known to be located on GGA4 were included as anchors to the genetic linkage map for this chromosome. Based on the known conserved synteny between GGA4 and human Chromosomes 4 and X, sequences were identified for the orthologous chicken genes from these human chromosomes by BLAST analysis. These sequences were subsequently used for the development of STS markers to be typed on the RH panel. Using a logarithm of the odds (LOD) threshold of 5.0, nine linkage groups could be constructed which were aligned with the genetic linkage map of this chromosome. The resulting RH map consisted of the 11 microsatellite markers and 50 genes. To further increase the number of genes on the map and to provide additional anchor points for the physical BAC map of this chromosome, BAC clones were identified for 22 microsatellites and 99 genes. The combined RH and BAC mapping approach resulted in the mapping of 61 genes on GGA4 increasing the resolution of the chicken–human comparative map for this chromosome. This enhanced comparative mapping resolution enabled the identification of multiple rearrangements between GGA4 and human Chromosomes 4q and Xp.  相似文献   
59.
To validate the ChickRH6 whole-genome radiation hybrid (WGRH) panel, we constructed a map of chicken Chromosome 7 based on 19 microsatellite markers from the genetic map and 76 ESTs (expressed sequence tags), whose efficient targeted development was made possible by using the ICCARE software. This high-density radiation hybrid (RH) map of a chicken macrochromosome gives us indications on characteristics of ChickRH6. The potential resolution of the panel is 325 kb and the practical resolution of our framework map is 1.3 Mb. Based on these results, a complete framework map of the chicken genome would comprise 1000 markers. The marker order is in good agreement with the genetic map and comparison with the human and mouse sequence maps revealed a number of internal rearrangements.  相似文献   
60.
Goya RG  Brown OA  Pléau JM  Dardenne M 《Peptides》2004,25(1):139-142
Thymulin is a thymic hormone exclusively produced by the thymic epithelial cells. It consists of a nonapeptide component coupled to the ion zinc, which confers biological activity to this molecule. After its discovery in the early 1970, thymulin was characterized as a thymic hormone involved in several aspects of intra- and extrathymic T-cell differentiation. Subsequently, it was demonstrated that thymulin production and secretion is strongly influenced by the neuroendocrine system. Conversely, an emerging core of information points to thymulin as a hypophysotropic peptide. Here we review the evidence supporting the hypothesis that thymulin is an important player in the hypophyso-thymic axis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号