首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1102篇
  免费   98篇
  1200篇
  2022年   4篇
  2021年   15篇
  2020年   5篇
  2019年   7篇
  2018年   10篇
  2017年   11篇
  2016年   15篇
  2015年   33篇
  2014年   43篇
  2013年   51篇
  2012年   64篇
  2011年   76篇
  2010年   51篇
  2009年   52篇
  2008年   61篇
  2007年   68篇
  2006年   66篇
  2005年   72篇
  2004年   53篇
  2003年   69篇
  2002年   64篇
  2001年   13篇
  2000年   15篇
  1999年   12篇
  1998年   16篇
  1997年   10篇
  1996年   12篇
  1995年   20篇
  1994年   9篇
  1993年   9篇
  1992年   21篇
  1991年   10篇
  1990年   11篇
  1989年   10篇
  1988年   11篇
  1987年   9篇
  1986年   7篇
  1985年   8篇
  1984年   10篇
  1983年   7篇
  1982年   7篇
  1981年   8篇
  1980年   8篇
  1979年   12篇
  1978年   11篇
  1977年   10篇
  1976年   7篇
  1972年   4篇
  1971年   4篇
  1964年   3篇
排序方式: 共有1200条查询结果,搜索用时 0 毫秒
51.
When diploid cells of Saccharomyces cerevisiae homozygous for the temperature-sensitive cell division cycle mutation cdc6-1 are grown at a semipermissive temperature they exhibit elevated genomic instability, as indicated by enhanced mitotic gene conversion, mitotic intergenic recombination, chromosomal loss, chromosomal gain, and chromosomal rearrangements. Employing quantitative Southern analysis of chromosomes separated by transverse alternating field gel electrophoresis (TAFE), we have demonstrated that 2N-1 cells monosomic for chromosome VII, owing to the cdc6-1 defect, show slow growth and subsequently yield 2N variants that grow at a normal rate in association with restitution of disomy for chromosome VII. Analysis of TAFE gels also demonstrates that cdc6-1/cdc6-1 diploids give rise to aberrant chromosomes of novel lengths. We propose an explanation for the genomic instability induced by the cdc6-1 mutation, which suggests that hyper-recombination, chromosomal loss, chromosomal gain and chromosomal rearrangements reflect aberrant mitotic division by cdc6-1/cdc6-1 cells containing chromosomes that have not replicated fully.  相似文献   
52.
53.

Key message

The Co - x anthracnose R gene of common bean was fine-mapped into a 58 kb region at one end of chromosome 1, where no canonical NB-LRR-encoding genes are present in G19833 genome sequence.

Abstract

Anthracnose, caused by the phytopathogenic fungus Colletotrichum lindemuthianum, is one of the most damaging diseases of common bean, Phaseolus vulgaris. Various resistance (R) genes, named Co-, conferring race-specific resistance to different strains of C. lindemuthianum have been identified. The Andean cultivar JaloEEP558 was reported to carry Co-x on chromosome 1, conferring resistance to the highly virulent strain 100. To fine map Co-x, 181 recombinant inbred lines derived from the cross between JaloEEP558 and BAT93 were genotyped with polymerase chain reaction (PCR)-based markers developed using the genome sequence of the Andean genotype G19833. Analysis of RILs carrying key recombination events positioned Co-x at one end of chromosome 1 to a 58 kb region of the G19833 genome sequence. Annotation of this target region revealed eight genes: three phosphoinositide-specific phospholipases C (PI-PLC), one zinc finger protein and four kinases, suggesting that Co-x is not a classical nucleotide-binding leucine-rich encoding gene. In addition, we identified and characterized the seven members of common bean PI-PLC gene family distributed into two clusters located at the ends of chromosomes 1 and 8. Co-x is not a member of Co-1 allelic series since these two genes are separated by at least 190 kb. Comparative analysis between soybean and common bean revealed that the Co-x syntenic region, located at one end of Glycine max chromosome 18, carries Rhg1, a major QTL contributing to soybean cyst nematode resistance. The PCR-based markers generated in this study should be useful in marker-assisted selection for pyramiding Co-x with other R genes.  相似文献   
54.
The neurotropic rabies virus (RABV) has developed several evasive strategies, including immunoevasion, to successfully infect the nervous system (NS) and trigger a fatal encephalomyelitis. Here we show that expression of LGP2, a protein known as either a positive or negative regulator of the RIG-I-mediated innate immune response, is restricted in the NS. We used a new transgenic mouse model (LGP2 TG) overexpressing LGP2 to impair the innate immune response to RABV and thus revealed the role of the RIG-I-mediated innate immune response in RABV pathogenesis. After infection, LGP2 TG mice exhibited reduced expression of inflammatory/chemoattractive molecules, beta interferon (IFN-β), and IFN-stimulated genes in their NS compared to wild-type (WT) mice, demonstrating the inhibitory function of LGP2 in the innate immune response to RABV. Surprisingly, LGP2 TG mice showed more viral clearance in the brain and lower morbidity than WT mice, indicating that the host innate immune response, paradoxically, favors RABV neuroinvasiveness and morbidity. LGP2 TG mice exhibited similar neutralizing antibodies and microglia activation to those of WT mice but showed a reduction of infiltrating CD4(+) T cells and less disappearance of infiltrating CD8(+) T cells. This occurred concomitantly with reduced neural expression of the IFN-inducible protein B7-H1, an immunoevasive protein involved in the elimination of infiltrated CD8(+) T cells. Our study shows that the host innate immune response favors the infiltration of T cells and, at the same time, promotes CD8(+) T cell elimination. Thus, to a certain extent, RABV exploits the innate immune response to develop its immunoevasive strategy.  相似文献   
55.
Combination therapies are often needed for effective clinical outcomes in the management of complex diseases, but presently they are generally based on empirical clinical experience. Here we suggest a novel application of search algorithms—originally developed for digital communication—modified to optimize combinations of therapeutic interventions. In biological experiments measuring the restoration of the decline with age in heart function and exercise capacity in Drosophila melanogaster, we found that search algorithms correctly identified optimal combinations of four drugs using only one-third of the tests performed in a fully factorial search. In experiments identifying combinations of three doses of up to six drugs for selective killing of human cancer cells, search algorithms resulted in a highly significant enrichment of selective combinations compared with random searches. In simulations using a network model of cell death, we found that the search algorithms identified the optimal combinations of 6–9 interventions in 80–90% of tests, compared with 15–30% for an equivalent random search. These findings suggest that modified search algorithms from information theory have the potential to enhance the discovery of novel therapeutic drug combinations. This report also helps to frame a biomedical problem that will benefit from an interdisciplinary effort and suggests a general strategy for its solution.  相似文献   
56.
Summary We have cloned the entire r-determinant of the antibiotic resistance plasmid R100.1 on the plasmid vectors pCR1 and pSC201. We find that the hybrid plasmids segregate from cultures in which replication of the vector is blocked. This suggests that the r-det is not capable of autonomous replication.  相似文献   
57.
It has been suggested that Locusta migratoria amplifies its ribosomal RNA genes in the growing oocytes (Kunz (1967) Chromosoma20, 332–370). Cloned ribosomal DNA of L. migratoria was used to analyze rDNA structure and number. The rDNA is localized on three chromosome pairs in six nucleolus organizers. It was found that all structural variants of the rRNA genes which have been described previously are represented in the same relative amounts in DNA from isolated oocytes as in somatic cells. Furthermore, the rRNA gene number is not increased in oocyte DNA, i.e., amplification does not occur. Therefore, the large number of multiple nucleoli seen in the growing oocytes has to be interpreted as the fully extended and fully active set of chromosomal rRNA genes. The total rRNA gene number was determined by dot blot hybridization to be about 3300 genes/haploid genome.  相似文献   
58.
Quality control (QC) in the endoplasmic reticulum (ER) scrutinizes newly synthesized proteins and directs them either to ER export or ER-associated degradation (ERAD). Here, we demonstrate that the human δ-opioid receptor (hδOR) is subjected to ERQC in both N-glycan-dependent and -independent manners. This was shown by investigating the biosynthesis and trafficking of wild-type and non-N-glycosylated F27C variants in metabolic pulse-chase assays coupled with flow cytometry and cell surface biotinylation. Both QC mechanisms distinguished the minute one-amino acid difference between the variants, targeting a large fraction of hδOR-Cys27 to ERAD. However, the N-glycan-independent QC was unable to compensate the N-glycan-dependent pathway, and some incompletely folded non-N-glycosylated hδOR-Cys27 reached the cell surface in conformation incompatible with ligand binding. The turnover of receptors associating with the molecular chaperone calnexin (CNX) was significantly slower for the hδOR-Cys27, pointing to an important role of CNX in the hδOR N-glycan-dependent QC. This was further supported by the fact that inhibiting the co-translational interaction of hδOR-Cys27 precursors with CNX led to their ERAD. Opioid receptor pharmacological chaperones released the CNX-bound receptors to ER export and, furthermore, were able to rescue the Cys27 variant from polyubiquitination and retrotranslocation to the cytosol whether carrying N-glycans or not. Taken together, the hδOR appears to rely primarily on the CNX-mediated N-glycan-dependent QC that has the capacity to assist in folding, whereas the N-glycan-independent mechanism constitutes an alternative, although less accurate, system for directing misfolded/incompletely folded receptors to ERAD, possibly in altered cellular conditions.  相似文献   
59.

Background

DECISION?+?2, a training program for physicians, is designed to implement shared decision making (SDM) in the context of antibiotics use for acute respiratory tract infections (ARTIs). We evaluated the impact of DECISION?+?2 on SDM implementation as assessed by patients and physicians, and on physicians’ intention to engage in SDM.

Methods

From 2010 to 2011, a multi-center, two-arm, parallel randomized clustered trial appraised the effects of DECISION?+?2 on the decision to use antibiotics for patients consulting for ARTIs. We randomized 12 family practice teaching units (FPTUs) to either DECISION?+?2 or usual care. After the consultation, both physicians and patients independently completed questionnaires based on the D-Option scale regarding SDM behaviors during the consultation. Patients also answered items assessing the role they assumed during the consultation (active/collaborative/passive). Before and after the intervention, physicians completed a questionnaire based on the Theory of Planned Behavior to measure their intention to engage in SDM. To account for the cluster design, we used generalized estimating equations and generalized linear mixed models to assess the impact of DECISION?+?2 on the outcomes of interest.

Results

A total of 270 physicians (66% women) participated in the study. After DECISION?+?2, patients’ D-Option scores were 80.1?±?1.1 out of 100 in the intervention group and 74.9?±?1.1 in the control group (p?=?0.001). Physicians’ D-Option scores were 79.7?±?1.8 in the intervention group and 76.3?±?1.9 in the control group (p?=?0.2). However, subgroup analyses showed that teacher physicians D-Option scores were 79.7?±?1.5 and 73.0?±?1.4 respectively (p?=?0.001). More patients reported assuming an active or collaborative role in the intervention group (67.1%), than in the control group (49.2%) (p?=?0.04). There was a significant relation between patients’ and physicians’ D-Option scores (p?<?0.01) and also between patient-reported assumed roles and both D-Option scores (as assessed by patients, p?<?0.01; and physicians, p?=?0.01). DECISION?+?2 had no impact on the intention of physicians to engage in SDM.

Conclusion

DECISION?+?2 positively influenced SDM behaviors as assessed by patients and teacher physicians. Physicians’ intention to engage in SDM was not affected by DECISION?+?2.

Trial registration

ClinicalTrials.gov trials register no. NCT01116076.
  相似文献   
60.
Desensitization of G protein-coupled receptors (GPCRs) involves receptor phosphorylation and reduction in the number of receptors at the cell surface. The neuropeptide Y (NPY) Y(1) receptor undergoes fast desensitization. We examined agonist-induced signaling and internalization using NPY Y(1) receptors fused to green fluorescent protein (EGFP). When expressed in HEK293 cells, EGFP-hNPY Y(1) receptors were localized at the plasma membrane, desensitized rapidly as assessed using calcium responses, and had similar properties compared to hNPY Y(1) receptors. Upon agonist challenge, the EGFP signal decreased rapidly (t(1/2) = 107 +/- 3 s) followed by a slow recovery. This decrease was blocked by BIBP3226, a Y(1) receptor antagonist, or by pertussis toxin, in agreement with Y(1) receptor activation. Internalization of EGFP-hNPY Y(1) receptors to acidic endosomal compartments likely accounts for the decrease in the EGFP signal, being absent after pretreatment with monensin. Concanavalin A and hypertonic sucrose, which inhibit clathrin-mediated endocytosis, blocked the decrease in fluorescence. After agonist, intracellular EGFP signals were punctate and co-localized with transferrin-Texas Red, a marker of clathrin-associated internalization and recycling, but not with LysoTracker Red, a lysosomal pathway marker, supporting receptor trafficking to recycling endosomes rather than the late endosomal/lysosomal pathway. Pulse-chase experiments revealed no receptor degradation after internalization. The slow recovery of fluorescence was unaffected by cycloheximide or actinomycin D, indicating that de novo synthesis of receptors was not limiting. Use of a multicompartment model to fit our fluorescence data allows simultaneous determination of internalization and recycling rate constants. We propose that rapid internalization of receptors via the clathrin-coated pits recycling pathway may largely account for the rapid desensitization of NPY Y(1) receptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号