首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   346篇
  免费   29篇
  2024年   1篇
  2022年   2篇
  2021年   12篇
  2020年   6篇
  2019年   11篇
  2018年   10篇
  2017年   11篇
  2016年   12篇
  2015年   19篇
  2014年   23篇
  2013年   26篇
  2012年   42篇
  2011年   27篇
  2010年   23篇
  2009年   16篇
  2008年   10篇
  2007年   15篇
  2006年   14篇
  2005年   10篇
  2004年   18篇
  2003年   17篇
  2002年   12篇
  2001年   1篇
  2000年   6篇
  1999年   5篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1994年   3篇
  1992年   2篇
  1991年   3篇
  1989年   2篇
  1986年   1篇
  1984年   3篇
排序方式: 共有375条查询结果,搜索用时 15 毫秒
41.
42.
The synthesis of diverse functionalized ureas in a semi-parallel fashion is described, as well as their β12-adrenergic activities and the corresponding structure-activity relationship (SAR). We have focused on lipophilicity and duration of action, and we have discovered a strong correlation in this series of molecules. A quantitative structure-activity relationship (QSAR) analysis will be presented that quantifies this relationship.  相似文献   
43.
Nanopharmaceutics composed of a carrier and a protein have the potential to improve the activity of therapeutical proteins. Therapy for lysosomal diseases is limited by the lack of effective protein delivery systems that allow the controlled release of specific proteins to the lysosomes. Here we address this problem by developing functional polyelectrolyte-based nanoparticles able to promote acidic pH-triggered release of the loaded protein. Trimethyl chitosan (TMC) was synthesized and allowed to form polyelectrolyte complexes (PECs) with the lysosomal enzyme α-GAL through self-assembly and ionotropic gelation, with average particle size <200 nm, polydispersity index (PDI) <0.2, ζ potential of ~ 20 mV, and a protein loading efficiency close to 65%. These polyelectrolyte nanoparticles were stable and active under physiological conditions and able to release the enzyme at acidic pH, as demonstrated by in situ atomic force microscopy (AFM). These nanoparticles were further functionalized with Atto 647N for single-particle characterization and tracking their cellular uptake and fate using high-resolution fluorescence microscopy. In contrast with their precursor, TMC, PECs were efficiently internalized by human endothelial cells and mostly accumulated in lysosomal compartments. The superior physicochemical characteristics of the TMC/α-GAL PECs together with their excellent cellular uptake properties indicate their enormous potential as advanced protein delivery systems for the treatment of lysosomal storage diseases.  相似文献   
44.
We isolated eleven strains of the harmful algal bloom (HAB)-forming dinoflagellate Karlodinium veneficum during a bloom event in the NW Mediterranean coastal waters and we studied the inter-strain variability in several of their physiological and biochemical traits. These included autotrophic growth parameters, feeding capabilities (mixotrophy), lipid composition, and, in some cases, their responses to biotic and abiotic factors. The strains were found to differ in their growth rates (0.27–0.53 d−1) and in the maximum cell concentrations achieved during stationary phase (6.1 × 104–8.6 × 104 cells mL−1). Their ingestion performance, when offered Rhodomonas salina as prey, was also diverse (0.22–1.3 cells per K. veneficum per day; 8–52% of their daily ration). At least two strains survived for several months under strict heterotrophic conditions (no light, low inorganic nutrients availability, and R. salina as food source). These strains also showed very distinct fatty acid compositions, with very low contents of monounsaturated and polyunsaturated fatty acids. According to a Bray Curtis similarity analysis, three or four strain groups able to perform different roles in bloom development were identified. We further analyzed one strain from each of the two most distinct groups with respect to prey concentration, light intensity, nutrient availability, and we determined the functional responses (growth and feeding rates) to food concentration. Taken together, the results served to highlight the role of mixotrophy and clone variability in the formation of HABs.  相似文献   
45.
The tumor suppressor gene p53 is mutated or deleted in over 50% of human tumors. As functional p53 plays a pivotal role in protecting against cancer development, several strategies for restoring wild-type (wt) p53 function have been investigated. In this study, we applied an approach using gene repair with zinc finger nucleases (ZFNs). We adapted a commercially-available yeast one-hybrid (Y1H) selection kit to allow rapid building and optimization of 4-finger constructs from randomized PCR libraries. We thus generated novel functional zinc finger nucleases against two DNA sites in the human p53 gene, near cancer mutation 'hotspots'. The ZFNs were first validated using in vitro cleavage assays and in vivo episomal gene repair assays in HEK293T cells. Subsequently, the ZFNs were used to restore wt-p53 status in the SF268 human cancer cell line, via ZFN-induced homologous recombination. The frequency of gene repair and mutation by non-homologous end-joining was then ascertained in several cancer cell lines, using a deep sequencing strategy. Our Y1H system facilitates the generation and optimisation of novel, sequence-specific four- to six-finger peptides, and the p53-specific ZFN described here can be used to mutate or repair p53 in genomic loci.  相似文献   
46.
Long-term immune control of viral replication still remains a major challenge in retroviral diseases. Several monoclonal antibodies (MAbs) have already shown antiviral activities in vivo, including in the clinic but their effects on the immune system of treated individuals are essentially unknown. Using the lethal neurodegeneration induced in mice upon infection of neonates by the FrCas(E) retrovirus as a model, we report here that transient treatment by a neutralizing MAb shortly after infection can, after an immediate antiviral effect, favor the development of a strong protective host immune response containing viral propagation long after the MAb has disappeared. In vitro virus neutralization- and complement-mediated cell lysis assays, as well as in vivo viral challenges and serum transfer experiments, indicate a clear and essential contribution of the humoral response to antiviral protection. Our observation may have important therapeutic consequences as it suggests that short antibody-based therapies early after infection should be considered, at least in the case of maternally infected infants, as adjunctive treatment strategies against human immunodeficiency virus, not only for a direct effect on the viral load but also for favoring the emergence of an endogenous antiviral immune response.  相似文献   
47.
Protonated peptides derived from proline‐rich proteins (PRP) are often difficult to sequence by standard collision‐induced dissociation (CID) mass spectrometry (MS) due to preferential amide bond cleavage N‐terminal to proline. In connection with bovine spongiform encephalopathy regulations, proteolytic products derived from the PRP collagen have been suggested as markers for contamination of animal feedstuffs with processed animal protein (Fernandez Ocaña, M. et al., Analyst 2004, 129, 111–115). Herein, we report the identification of these marker peptides using the strategy of C‐terminal sequencing by CID MS from their sodium and lithium adducts. Upon fragmentation a new cationized peptide was produced that is one C‐terminal amino acid shorter in length. This dissociation pathway allowed for the facile identification of the C‐terminal residue by matrix‐assisted laser desorption/ionization tandem time‐of‐flight mass spectrometry. Each newly formed cationized peptide was further fragmented by up to seven stages of electrospray ionization ion trap MS. Proline‐rich C‐terminal sequence tags were established which permitted successful database identification of collagen alpha type I proteins.  相似文献   
48.
49.
50.
Patients carrying mutations within the amyloid-β (Aβ) sequence develop severe early-onset cerebral amyloid angiopathy with some of the related variants manifesting primarily with hemorrhagic phenotypes. Matrix metalloproteases (MMPs) are typically associated with blood brain barrier disruption and hemorrhagic transformations after ischemic stroke. However, their contribution to cerebral amyloid angiopathy-related hemorrhage remains unclear. Human brain endothelial cells challenged with Aβ synthetic homologues containing mutations known to be associated in vivo with hemorrhagic manifestations (AβE22Q and AβL34V) showed enhanced production and activation of MMP-2, evaluated via Multiplex MMP antibody arrays, gel zymography, and Western blot, which in turn proteolytically cleaved in situ the Aβ peptides. Immunoprecipitation followed by mass spectrometry analysis highlighted the generation of specific C-terminal proteolytic fragments, in particular the accumulation of Aβ-(1–16), a result validated in vitro with recombinant MMP-2 and quantitatively evaluated using deuterium-labeled internal standards. Silencing MMP-2 gene expression resulted in reduced Aβ degradation and enhanced apoptosis. Secretion and activation of MMP-2 as well as susceptibility of the Aβ peptides to MMP-2 degradation were dependent on the peptide conformation, with fibrillar elements of AβE22Q exhibiting negligible effects. Our results indicate that MMP-2 release and activation differentially degrades Aβ species, delaying their toxicity for endothelial cells. However, taking into consideration MMP ability to degrade basement membrane components, these protective effects might also undesirably compromise blood brain barrier integrity and precipitate a hemorrhagic phenotype.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号