首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   18篇
  188篇
  2023年   2篇
  2022年   4篇
  2021年   7篇
  2020年   8篇
  2019年   4篇
  2018年   6篇
  2017年   5篇
  2016年   5篇
  2015年   13篇
  2014年   15篇
  2013年   13篇
  2012年   16篇
  2011年   16篇
  2010年   17篇
  2009年   10篇
  2008年   10篇
  2007年   11篇
  2006年   6篇
  2005年   3篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1995年   1篇
  1990年   1篇
排序方式: 共有188条查询结果,搜索用时 0 毫秒
61.
In the Brazilian Atlantic Rainforest (AF), amphibians (625 species) face habitat degradation leading to stressful thermal conditions that constrain animal activity (e.g., foraging and reproduction). Data on thermal ecology for these species are still scarce. We tested the hypothesis that environmental occupation affects the thermal tolerance of amphibian species more than their phylogenetic relationships. We evaluated patterns of thermal tolerance of 47 amphibian species by assessing critical thermal maxima and warming tolerances, relating these variables with ecological covariates (e.g., adult macro‐ and microhabitat and site of larval development). We used mean and maximum environmental temperature, ecological covariates, and morphological measurements in the phylogenetic generalized least squares model selection to evaluate which traits better predict thermal tolerance. We did not recover phylogenetic signal under a Brownian model; our results point to a strong association between critical thermal maxima and habitat and development site. Forest species were less tolerant to warm temperatures than open area or generalist species. Species with larvae that develop in lentic environment were more tolerant than those in lotic ones. Thus, species inhabiting forest microclimates are more vulnerable to the synergistic effect of habitat loss and climate change. We use radar charts as a quick evaluation tool for thermal risk diagnoses using aspects of natural history as axes.  相似文献   
62.
Anthropogenic nitrogen (N) deposition and resulting differences in ecosystem N and phosphorus (P) ratios are expected to impact photosynthetic capacity, that is, maximum gross primary productivity (GPPmax). However, the interplay between N and P availability with other critical resources on seasonal dynamics of ecosystem productivity remains largely unknown. In a Mediterranean tree–grass ecosystem, we established three landscape‐level (24 ha) nutrient addition treatments: N addition (NT), N and P addition (NPT), and a control site (CT). We analyzed the response of ecosystem to altered nutrient stoichiometry using eddy covariance fluxes measurements, satellite observations, and digital repeat photography. A set of metrics, including phenological transition dates (PTDs; timing of green‐up and dry‐down), slopes during green‐up and dry‐down period, and seasonal amplitude, were extracted from time series of GPPmax and used to represent the seasonality of vegetation activity. The seasonal amplitude of GPPmax was higher for NT and NPT than CT, which was attributed to changes in structure and physiology induced by fertilization. PTDs were mainly driven by rainfall and exhibited no significant differences among treatments during the green‐up period. Yet, both fertilized sites senesced earlier during the dry‐down period (17–19 days), which was more pronounced in the NT due to larger evapotranspiration and water usage. Fertilization also resulted in a faster increase in GPPmax during the green‐up period and a sharper decline in GPPmax during the dry‐down period, with less prominent decline response in NPT. Overall, we demonstrated seasonality of vegetation activity was altered after fertilization and the importance of nutrient–water interaction in such water‐limited ecosystems. With the projected warming‐drying trend, the positive effects of N fertilization induced by N deposition on GPPmax may be counteracted by an earlier and faster dry‐down in particular in areas where the N:P ratio increases, with potential impact on the carbon cycle of water‐limited ecosystems.  相似文献   
63.
A simple estimation of heterotrophic respiration can be obtained analytically as the y-intercept of the linear regression between soil-surface CO2 efflux and root biomass. In the present study, a development of this indirect methodology is presented by taking into consideration both the temporal variation and the spatial heterogeneity of heterotrophic respiration. For this purpose, soil CO2 efflux, soil carbon content and main stand characteristics were estimated in seven evergreen forest ecosystems along an elevation gradient ranging from 250 to 1740 m. For each site and for each sampling date the measured soil CO2 efflux (R S) was predicted with the model R S = a × S C + b × R D ± ε, where S C is soil carbon content per unit area to a depth of 30 cm and R D is the root density of the 2–5 mm root class. Regressions with statistically significant a and b coefficients allowed the indirect separation of the two components of soil CO2 efflux. Considering that the different sampling dates were characterized by different soil temperature, it was possible to investigate the temporal and thermal dependency of autotrophic and heterotrophic respiration. It was estimated that annual autotrophic respiration accounts for 16–58% of total soil CO2 efflux in the seven different evergreen ecosystems. In addition, our observations show a decrease of annual autotrophic respiration at increasing availability of soil nitrogen. Section Editor: A. Hodge  相似文献   
64.
Temperate reefs, built by multilayers of encrusting algae accumulated during hundreds to thousands of years, represent one of the most important habitats of the Mediterranean Sea. These bioconstructions are known as “coralligenous” and their spatial complexity allows the formation of heterogeneous microhabitats offering opportunities for a large number of small cryptic species hardly ever considered.Although sponges are the dominant animal taxon in the coralligenous rims with both insinuating and perforating species, this group is until now poorly known. Aim of this work is to develop a reference baseline about the taxonomic knowledge of sponges and, considering their high level of phenotypic plasticity, evaluate the importance of coralligenous accretions as a pocket for biodiversity conservation.Collecting samples in four sites along the coast of the Ligurian Sea, we recorded 133 sponge taxa (115 of them identified at species level and 18 at genus level). One species, Eurypon gracilis is new for science; three species, Paratimea oxeata, Clathria (Microciona) haplotoxa and Eurypon denisae are new records for the Italian sponge fauna, eleven species are new findings for the Ligurian Sea. Moreover, seventeen species have not been recorded before from the coralligenous community. The obtained data, together with an extensive review of the existing literature, increase to 273 the number of sponge species associated with the coralligenous concretions and confirm that this habitat is an extraordinary reservoir of biodiversity still largely unexplored, not only taxonomically, but also as to peculiar adaptations and life histories.  相似文献   
65.
The fossil record of amber dates back to the Palaeozoic, but it is only since the Mesozoic that amber became relatively common, probably because of the spreading of resin-producing plants. In Italy, the oldest ambers come from the Middle and Upper Triassic of the Dolomites. Cretaceous ambers come from some Albian sites in the Dolomites and from the Coniacian–Santonian of Vernasso, Julian Prealps, northern Italy. Until now, no Jurassic sites with amber have been reported in Italy, and this “Jurassic gap” seems generalized, since there are only a few Jurassic ambers described all over the world. Here, we report the first finding of Lower Jurassic (Pliensbachian) amber from the Bellori locality (Grezzana, Verona Province, Northern Italy). The amber was found in two clayey-coal levels containing plant remains and cuticles, with subordinate bivalves, foraminifera and ostracods. Palynomorphs of the amber levels are dominated by levigate and ornamented spores (ferns) and Circumpolles (conifers). Foraminiferal linings and algal cysts are also present. The freshwater alga Pseudoschizaea is reported for the first time from the Lower Jurassic. The amber shows different kinds of preservation, some peculiar features probably connected with the plant structure, and colours ranging from light yellow to blackish red. Moreover, it includes millimetre-sized wood structures (“mummified wood”) and gas bubbles. Fourier-transform–Infrared, thermogravimetric and differential thermogravimetric analyses were carried out and resulted in a clear characterization of this amber with respect to all others known so far. These data, together with sedimentological observations and fossil content analysis, suggest a coastal palaeoenvironment under rather wet conditions, comparable with the present-day Everglades, with the addition of a monsoonal climate as in the modern southern Asia.  相似文献   
66.
Much of the diversity of anthocyanins is due to the action of glycosyltransferases, which add sugar moieties to anthocyanidins. We identified two glycosyltransferases, F3GT1 and F3GGT1, from red-fleshed kiwifruit (Actinidia chinensis) that perform sequential glycosylation steps. Red-fleshed genotypes of kiwifruit accumulate anthocyanins mainly in the form of cyanidin 3-O-xylo-galactoside. Genes in the anthocyanin and flavonoid biosynthetic pathway were identified and shown to be expressed in fruit tissue. However, only the expression of the glycosyltransferase F3GT1 was correlated with anthocyanin accumulation in red tissues. Recombinant enzyme assays in vitro and in vivo RNA interference (RNAi) demonstrated the role of F3GT1 in the production of cyanidin 3-O-galactoside. F3GGT1 was shown to further glycosylate the sugar moiety of the anthocyanins. This second glycosylation can affect the solubility and stability of the pigments and modify their colour. We show that recombinant F3GGT1 can catalyse the addition of UDP-xylose to cyanidin 3-galactoside. While F3GGT1 is responsible for the end-product of the pathway, F3GT1 is likely to be the key enzyme regulating the accumulation of anthocyanin in red-fleshed kiwifruit varieties.  相似文献   
67.
68.
The neuron loss characteristic of hippocampal sclerosis in temporal lobe epilepsy patients is thought to be the result of excitotoxic, rather than ischemic, injury. In this study, we assessed changes in vascular structure, gene expression, and the time course of neuronal degeneration in the cerebral cortex during the acute period after onset of pilocarpine-induced status epilepticus (SE). Immediately after 2 hr SE, the subgranular layers of somatosensory cortex exhibited a reduced vascular perfusion indicative of ischemia, whereas the immediately adjacent supragranular layers exhibited increased perfusion. Subgranular layers exhibited necrotic pathology, whereas the supergranular layers were characterized by a delayed (24 h after SE) degeneration apparently via programmed cell death. These results indicate that both excitotoxic and ischemic injuries occur during pilocarpine-induced SE. Both of these degenerative pathways, as well as the widespread and severe brain damage observed, should be considered when animal model-based data are compared to human pathology.  相似文献   
69.
Scinax (Anura: Hylidae) is a species-rich genus of amphibians (113 spp.), divided into five species groups by morphological features. Cladistic analyses however revealed only two monophyletic clades in these groups: Scinax catharinae and Scinax ruber. Most species from the S. catharinae clade are found in Atlantic rainforest, except for Scinax canastrensis,S. centralis, S. luizotavioi, S. machadoi,S. pombali and S. skaios. In the present work, specimens of Scinax collected in Chapada dos Guimarães, central Brazil, were morphologically compatible with species from theS. catharinae group. On the other hand, genetic analysis based on mitochondrial (16S and 12S) and nuclear (rhodopsin) sequences revealed a nucleotide divergence of 6 to 20% between Scinax sp. and other congeners from the Brazilian savannah (Cerrado). Accordingly, Bayesian inference placed Scinax sp. in the S. catharinae clade with high support values. Hence, these findings strongly indicate the presence of a new species in the S. catharinae clade from the southwestern portion of the Brazilian savannah. To be properly validated as a novel species, detailed comparative morphological and bioacustic studies with other taxa from Brazil such asS. canastrensis, S. centralis, S. luizotavioi, S. machadoi, S. pombali and S. skaios are required.  相似文献   
70.
Ecosystem functions in streams (e.g., microbially mediated leaf litter breakdown) are threatened globally by the predicted agricultural intensification and its expansion into pristine areas, which is associated with increasing use of fertilizers and pesticides. However, the ecological consequences may depend on the disturbance history of microbial communities. To test this, we assessed the effects of fungicides and nutrients (four levels each) on the structural and functional resilience of leaf‐associated microbial communities with differing disturbance histories (pristine vs. previously disturbed) in a 2 × 4 × 4‐factorial design (= 6) over 21 days. Microbial leaf breakdown was assessed as a functional variable, whereas structural changes were characterized by the fungal community composition, species richness, biomass, and other factors. Leaf breakdown by the pristine microbial community was reduced by up to 30% upon fungicide exposure compared with controls, whereas the previously disturbed microbial community increased leaf breakdown by up to 85%. This significant difference in the functional response increased in magnitude with increasing nutrient concentrations. A pollution‐induced community tolerance in the previously disturbed microbial community, which was dominated by a few species with high breakdown efficacies, may explain the maintained function under stress. Hence, the global pressure on pristine ecosystems by agricultural expansion is expected to cause a modification in the structure and function of heterotrophic microbial communities, with microbially mediated leaf litter breakdown likely becoming more stable over time as a consequence of fungal community adaptions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号