首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5745篇
  免费   265篇
  国内免费   14篇
  2024年   14篇
  2023年   55篇
  2022年   159篇
  2021年   323篇
  2020年   149篇
  2019年   198篇
  2018年   217篇
  2017年   175篇
  2016年   237篇
  2015年   291篇
  2014年   332篇
  2013年   457篇
  2012年   413篇
  2011年   426篇
  2010年   234篇
  2009年   204篇
  2008年   221篇
  2007年   216篇
  2006年   199篇
  2005年   166篇
  2004年   134篇
  2003年   100篇
  2002年   106篇
  2001年   74篇
  2000年   73篇
  1999年   58篇
  1998年   30篇
  1997年   19篇
  1996年   20篇
  1995年   21篇
  1993年   18篇
  1992年   39篇
  1991年   53篇
  1990年   50篇
  1989年   36篇
  1988年   40篇
  1987年   48篇
  1986年   34篇
  1985年   42篇
  1984年   34篇
  1983年   23篇
  1982年   19篇
  1981年   17篇
  1980年   17篇
  1979年   26篇
  1978年   28篇
  1977年   14篇
  1975年   14篇
  1974年   19篇
  1973年   21篇
排序方式: 共有6024条查询结果,搜索用时 15 毫秒
981.
A simple and efficient method for the synthesis of optically active γ-azidoalcohols is described. The lipase catalyzed kinetic resolutions of acetates of γ-azidoalcohols in aqueous as well as organic media have been studied. The enantiomerically pure γ-azidoalcohols obtained by the kinetic resolution in high enantiopurity have been utilized towards the synthesis of enantiomeric pairs of anti-depressant drugs, fluoxetine and duloxetine.  相似文献   
982.
983.
984.
ADP plays an integral role in the process of hemostasis by signaling through two platelet G-protein-coupled receptors, P2Y1 and P2Y12. The recent use of antagonists against these two receptors has contributed a substantial body of data characterizing the ADP signaling pathways in human platelets. Specifically, the results have indicated that although P2Y1 receptors are involved in the initiation of platelet aggregation, P2Y12 receptor activation appears to account for the bulk of the ADP-mediated effects. Based on this consideration, emphasis has been placed on the development of a new class of P2Y12 antagonists (separate from clopidogrel and ticlopidine) as an approach to the treatment of thromboembolic disorders. The present work examined the molecular mechanisms by which two of these widely used adenosine-based P2Y12 antagonists (2-methylthioadenosine 5′-monophosphate triethylammonium salt (2MeSAMP) and ARC69931MX), inhibit human platelet activation. It was found that both of these compounds raise platelet cAMP to levels that substantially inhibit platelet aggregation. Furthermore, the results demonstrated that this elevation of cAMP did not require Gi signaling or functional P2Y12 receptors but was mediated through activation of a separate G protein-coupled pathway, presumably involving Gs. However, additional experiments revealed that neither 2MeSAMP nor ARC69931MX (cangrelor) increased cAMP through activation of A2a, IP, DP, or EP2 receptors, which are known to couple to Gs. Collectively, these findings indicate that 2MeSAMP and ARC69931MX interact with an unidentified platelet G protein-coupled receptor that stimulates cAMP-mediated inhibition of platelet function. This inhibition is in addition to that derived from antagonism of P2Y12 receptors.Upon damage to the endothelial layer of the blood vessel wall, the underlying subendothelium is exposed to platelets in the blood, initiating a cascade of signaling events resulting in the transformation of “resting” platelets into “activated” platelets (1). One significant characteristic associated with these signaling events is the secretion of ADP from the platelet-dense granules (2). This released ADP acts to further amplify the platelet activation response by interacting with its G-protein-coupled receptors on the platelet surface, namely P2Y1 (coupled to Gq) and P2Y12 (coupled to Gi) (35). The consequence of platelet activation through ADP is a conformational change in the platelet membrane glycoprotein αIIbβ3 (6, 7), which then binds to fibrinogen present in the plasma. The binding of fibrinogen with αIIbβ3 on the surface of adjacent platelets results in fibrinogen-platelet cross-linking and the formation of a hemostatic plug at the site of vascular injury (8).Consequently, ADP is thought to play an integral role in the normal process of hemostasis. Of the two ADP-receptor signaling pathways in platelets, evidence has indicated that ADP-mediated P2Y12 signaling appears to play a more prominent role in platelet activation than ADP-mediated P2Y1 signaling (9, 10). For the most part, support for this notion derives from the use of the adenosine-based P2Y12 antagonists (i.e. 2MeSAMP4 and ARC69931MX), which have a much broader inhibitory profile than P2Y1 antagonists (e.g. A3P5P (adenosine-3′-phosphate-5′-phosphate) or MRS2179) (9). Thus, 2MeSAMP and ARC69931MX inhibit platelet aggregation in response to multiple agonists, such as thromboxane A2, collagen, thrombin, etc. (1113), whereas P2Y1 antagonists do not. On the other hand, this general requirement for P2Y12 signaling seems to be inconsistent with earlier reports indicating that activation of certain platelet receptors (e.g. thromboxane A2 receptor) can cause aggregation through ADP-independent mechanisms (14, 15). Based on this apparent inconsistency in the contribution of P2Y12 signaling to the overall platelet activation response, the present study investigated the possibility that the broad spectrum of inhibitory activity of this new generation of P2Y12 antagonists (i.e. MeSAMP and ARC69931MX) may derive from an elevation in platelet cAMP levels.Our data demonstrated that both 2MeSAMP and ARC69931MX do in fact significantly raise human platelet cAMP. Furthermore, this pharmacological effect is independent of P2Y12-Gi signaling and appears to proceed through activation of a separate Gs-coupled platelet receptor. Taken together, the results therefore indicate that these adenosine-based P2Y12 antagonists can produce their inhibition of platelet function through a cAMP-mediated mechanism.  相似文献   
985.
986.
Methylmercury (MeHg) is the most toxic form of mercury which is bioaccumulated in the aquatic food chain. It has been shown that one of the main targets of MeHg toxicity is the brain, but there is little knowledge of the molecular mechanisms of its toxic effects. In this work we used a proteomics analysis to determine the changes in the brain proteome of juvenile beluga (Huso huso) exposed to dietary MeHg. The juvenile beluga were fed the diet containing 0.8 ppm MeHg for 70 days. Proteins of the brain tissue were analyzed using two-dimensional electrophoresis and MALDI-TOF/TOF mass spectrometry. We found eight proteins with significant altered expression level in the fish brain exposed to MeHg. These proteins are involved in different cell functions including cell metabolism, protein folding, cell division, and signal transduction. Our results support the idea that MeHg exerts its toxicity through oxidative stress induction and apoptotic effects. They also suggest that chronic MeHg exposure would induce an important metabolic deficiency in the brain. These findings provide basic information to understand possible mechanisms of MeHg toxicity in aquatic ecosystems.  相似文献   
987.

Background  

DNA recognition by proteins is one of the most important processes in living systems. Therefore, understanding the recognition process in general, and identifying mutual recognition sites in proteins and DNA in particular, carries great significance. The sequence and structural dependence of DNA-binding sites in proteins has led to the development of successful machine learning methods for their prediction. However, all existing machine learning methods predict DNA-binding sites, irrespective of their target sequence and hence, none of them is helpful in identifying specific protein-DNA contacts. In this work, we formulate the problem of predicting specific DNA-binding sites in terms of contacts between the residue environments of proteins and the identity of a mononucleotide or a dinucleotide step in DNA. The aim of this work is to take a protein sequence or structural features as inputs and predict for each amino acid residue if it binds to DNA at locations identified by one of the four possible mononucleotides or one of the 10 unique dinucleotide steps. Contact predictions are made at various levels of resolution viz. in terms of side chain, backbone and major or minor groove atoms of DNA.  相似文献   
988.
In order to optimize the tumour dose by using wedge filters, systematic studies were carried out to investigate the accuracy of the beam modifier algorithm in a computerized treatment planning system (Theraplan plus, version 3.8). The effect of different parameters such as beam hardening and softening coefficients on the wedge factor was also studied. A 15 MV photon beam obtained from a linear accelerator was used throughout the experiments. Normalized wedge factors were determined experimentally as well as with the Theraplan plus system as a function of field size and depth in a water phantom for 15°, 30°, 45°, and 60° wedge filters. The attenuation coefficients, beam hardening coefficient, and beam softening coefficients were also determined experimentally using the 15 MV photon beam for each wedge angle. The measured normalized wedge factor was found to increase with increasing depth and field size for the 15 MV beam. The Theraplan plus calculated normalized wedge factor was found to be in good agreement with the experimental values. This study indicated that ignoring the dependence of the wedge factor on depth and field size will result in underexposure of the tumour.  相似文献   
989.

Background

Campylobacter jejuni is a common cause of acute gastroenteritis and is associated with post-infectious neuropathies such as the Guillain-Barré syndrome (GBS) and the Miller Fisher syndrome (MFS). We here present comparative genotyping of 49 C. jejuni strains from Bangladesh that were recovered from patients with enteritis or GBS. All strains were serotyped and analyzed by lipo-oligosaccharide (LOS) genotyping, amplified fragment length polymorphism (AFLP) analysis, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE).

Methodology/Principal Findings

C. jejuni HS:23 was a predominant serotype among GBS patients (50%), and no specific serotype was significantly associated with GBS compared to enteritis. PCR screening showed that 38/49 (78%) of strains could be assigned to LOS classes A, B, C, or E. The class A locus (4/7 vs 3/39; p<0.01) was significantly associated in the GBS-related strains as compared to enteritis strains. All GBS/oculomotor related strains contained the class B locus; which was also detected in 46% of control strains. Overlapping clonal groups were defined by MLST, AFLP and PFGE for strains from patients with gastroenteritis and GBS. MLST defined 22 sequence types (STs) and 7 clonal complexes including 7 STs not previously identified (ST-3742, ST-3741, ST-3743, ST-3748, ST-3968, ST-3969 and ST-3970). C. jejuni HS:23 strains from patients with GBS or enteritis were clonal and all strains belonged to ST-403 complex. Concordance between LOS class B and ST-403 complex was revealed. AFLP defined 25 different types at 90% similarity. The predominant AFLP type AF-20 coincided with the C. jejuni HS:23 and ST-403 complex.

Conclusion/Significance

LOS genotyping, MLST, AFLP and PFGE helped to identify the HS:23 strains from GBS or enteritis patients as clonal. Overall, genotypes exclusive for enteritis or for GBS-related strains were not obtained although LOS class A was significantly associated with GBS strains. Particularly, the presence of a clonal and putative neuropathogenic C. jejuni HS:23 serotype may contribute to the high prevalence of C. jejuni related GBS in Bangladesh.  相似文献   
990.

Background

The secretory proteins of Mycobacterium tuberculosis (M. tuberculosis) have been known to be involved in the virulence, pathogenesis as well as proliferation of the pathogen. Among this set, many proteins have been hypothesized to play a critical role at the genesis of the onset of infection, the primary site of which is invariably the human lung.

Methodology/Principal Findings

During our efforts to isolate potential binding partners of key secretory proteins of M. tuberculosis from a human lung protein library, we isolated peptides that strongly bound the virulence determinant protein Esat6. All peptides were less than fifty amino acids in length and the binding was confirmed by in vivo as well as in vitro studies. Curiously, we found all three binders to be unusually rich in phenylalanine, with one of the three peptides a short fragment of the human cytochrome c oxidase-3 (Cox-3). The most accessible of the three binders, named Hcl1, was shown also to bind to the Mycobacterium smegmatis (M. smegmatis) Esat6 homologue. Expression of hcl1 in M. tuberculosis H37Rv led to considerable reduction in growth. Microarray analysis showed that Hcl1 affects a host of key cellular pathways in M. tuberculosis. In a macrophage infection model, the sets expressing hcl1 were shown to clear off M. tuberculosis in much greater numbers than those infected macrophages wherein the M. tuberculosis was not expressing the peptide. Transmission electron microscopy studies of hcl1 expressing M. tuberculosis showed prominent expulsion of cellular material into the matrix, hinting at cell wall damage.

Conclusions/Significance

While the debilitating effects of Hcl1 on M. tuberculosis are unrelated and not because of the peptide''s binding to Esat6–as the latter is not an essential protein of M. tuberculosis–nonetheless, further studies with this peptide, as well as a closer inspection of the microarray data may shed important light on the suitability of such small phenylalanine-rich peptides as potential drug-like molecules against this pathogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号