首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1600篇
  免费   108篇
  2023年   7篇
  2022年   10篇
  2021年   18篇
  2020年   14篇
  2019年   20篇
  2018年   27篇
  2017年   19篇
  2016年   33篇
  2015年   39篇
  2014年   66篇
  2013年   95篇
  2012年   89篇
  2011年   78篇
  2010年   44篇
  2009年   40篇
  2008年   67篇
  2007年   87篇
  2006年   72篇
  2005年   61篇
  2004年   57篇
  2003年   60篇
  2002年   53篇
  2001年   48篇
  2000年   67篇
  1999年   42篇
  1998年   12篇
  1997年   10篇
  1996年   12篇
  1995年   13篇
  1992年   42篇
  1991年   42篇
  1990年   44篇
  1989年   43篇
  1988年   42篇
  1987年   26篇
  1986年   21篇
  1985年   17篇
  1984年   17篇
  1983年   17篇
  1982年   13篇
  1981年   12篇
  1980年   12篇
  1979年   10篇
  1974年   6篇
  1972年   6篇
  1971年   8篇
  1969年   9篇
  1968年   10篇
  1967年   6篇
  1966年   8篇
排序方式: 共有1708条查询结果,搜索用时 46 毫秒
991.
992.
Polypeptone is widely excluded from Schizosaccharomyces pombe growth medium. However, the reasons why polypeptone should be avoided have not been documented. Polypeptone dramatically induced cell lysis in the ura4 deletion mutant when cells approached the stationary growth phase, and this phenotype was suppressed by supplementation of uracil. To determine the specificity of this cell lysis phenotype, we created deletion mutants of other genes involved in de novo biosynthesis of uridine monophosphate (ura1, ura2, ura3, and ura5). Cell lysis was not observed in these gene deletion mutants. In addition, concomitant disruption of ura1, ura2, ura3, or ura5 in the ura4 deletion mutant suppressed cell lysis, indicating that cell lysis induced by polypeptone is specific to the ura4 deletion mutant. Furthermore, cell lysis was also suppressed when the gene involved in coenzyme Q biosynthesis was deleted. This is likely because Ura3 requires coenzyme Q for its activity. The ura4 deletion mutant was sensitive to zymolyase, which mainly degrades (1,3)-beta-D glucan, when grown in the presence of polypeptone, and cell lysis was suppressed by the osmotic stabiliser, sorbitol. Finally, the induction of cell lysis in the ura4 deletion mutant was due to the accumulation of orotidine-5-monophosphate. Cell wall integrity was dramatically impaired in the ura4 deletion mutant when grown in the presence of polypeptone. Because ura4 is widely used as a selection marker in S. pombe, caution needs to be taken when evaluating phenotypes of ura4 mutants.  相似文献   
993.
Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and adiposity and is a drug target for the treatment of obesity and diabetes. Here we identify pyruvate kinase M2 (PKM2) as a novel PTP1B substrate in adipocytes. PTP1B deficiency leads to increased PKM2 total tyrosine and Tyr105 phosphorylation in cultured adipocytes and in vivo. Substrate trapping and mutagenesis studies identify PKM2 Tyr-105 and Tyr-148 as key sites that mediate PTP1B-PKM2 interaction. In addition, in vitro analyses illustrate a direct effect of Tyr-105 phosphorylation on PKM2 activity in adipocytes. Importantly, PTP1B pharmacological inhibition increased PKM2 Tyr-105 phosphorylation and decreased PKM2 activity. Moreover, PKM2 Tyr-105 phosphorylation is regulated nutritionally, decreasing in adipose tissue depots after high-fat feeding. Further, decreased PKM2 Tyr-105 phosphorylation correlates with the development of glucose intolerance and insulin resistance in rodents, non-human primates, and humans. Together, these findings identify PKM2 as a novel substrate of PTP1B and provide new insights into the regulation of adipose PKM2 activity.  相似文献   
994.
13C NMR spectra of several 2,3-seco-alloaromadendrane-type acetyl hemiacetals were analysed and the structure of an additional plant growth-inhibitor was determined to be (+)-9α-acetoxyovalifoliene. The biological activity of the new compound is also described.  相似文献   
995.
The Grueneberg ganglion is a specialized olfactory sensor. In mice, its activation induces freezing behavior. The topographical map corresponding to the central projections of its sensory axons is poorly defined, as well as the guidance molecules involved in its establishment. We took a transgenic approach to label exclusively Grueneberg sensory neurons and their axonal projections. We observed that a stereotyped convergence map in a series of coalescent neuropil-rich structures is already present at birth. These structures are part of a peculiar and complex neuronal circuit, composed of a chain of glomeruli organized in a necklace pattern that entirely surrounds the trunk of the olfactory bulb. We found that the necklace chain is composed of two different sets of glomeruli: one exclusively innervated by Grueneberg ganglion neurons, the other by axonal inputs from the main olfactory neuroepithelium. Combining the transgenic Grueneberg reporter mouse with a conditional null genetic approach, we then show that the axonal wiring of Grueneberg neurons is dependent on neuropilin 1 expression. Neuropilin 1-deficient Grueneberg axonal projections lose their strict and characteristic avoidance of vomeronasal glomeruli, glomeruli that are innervated by secondary neurons expressing the repulsive guidance cue and main neuropilin 1 ligand Sema3a. Taken together, our observations represent a first step in the understanding of the circuitry and the coding strategy used by the Grueneberg system.  相似文献   
996.
Nagao M  Uemura M 《Planta》2012,235(4):851-861
Previously, it was reported that like land plants, the green alga Klebsormidium flaccidum (Streptophyta) accumulates sucrose during cold acclimation (Nagao et al. Plant Cell Environ 31:872–885, 2008), suggesting that synthesis of sucrose could enhance the freezing tolerance of this alga. Because sucrose phosphate phosphatase (SPP; EC 3.1.3.24) is a key enzyme in the sucrose synthesis pathway in plants, we analyzed the SPP gene in K. flaccidum (KfSPP, GenBank accession number AB669024) to clarify its role in sucrose accumulation. As determined from its deduced amino acid sequence, KfSPP contains the N-terminal domain that is characteristic of the L-2-haloacid-dehalogenase family of phosphatases/hydrolases (the HAD phosphatase domain). However, it lacks the extensive C-terminal domain found in SPPs of land plants. Database searches revealed that the SPPs in cyanobacteria also lack the C-terminal domain. In addition, the green alga Coccomyxa (Chlorophyta) and K. flaccidum, which are closely related to land plants, have cyanobacterial-type SPPs, while Chlorella (Chlorophyta) has a land plant-type SPP. These results demonstrate that even K. flaccidum (Streptophyta), as a recent ancestor of land plants, has the cyanobacterial-type SPP lacking the C-terminal domain. Because SPP and sucrose phosphate synthase (SPS) catalyze sequential reactions in sucrose synthesis in green plant cells and the lack of the C-terminal domain in KfSPP is predicted to decrease its activity, the interaction between decreased KfSPP activity and SPS activity may alter sucrose synthesis during cold acclimation in K. flaccidum.  相似文献   
997.
Cycad seed consumption by the native islanders of Guam is frequently associated with high rates of amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS/PDC); furthermore, accompanying pathological examination often exhibits α-synuclein inclusions in the neurons of the affected brain. Acylated steryl-β-glucoside (ASG) contained in cycad seeds is considered as causative environmental risk factor. We aimed to investigate whether ASG influences aggregation and cell toxicity of α-synuclein. To understand whether ASG is a causative factor in the development of ALS/PDC, soybean-derived ASG was tested for its effect on in vitro aggregation of α-synuclein using Thioflavin-T. ASG was also tested to determine whether it modulates α-synuclein cytotoxicity in yeast cells. In addition, we determined whether an interaction between ASG and α-synuclein occurs in the plasma membrane or cytoplasm using three factors: GM1 ganglioside, small unilamellar vesicles, and ATP. In the present study, we found that ASG-mediated acceleration of α-synuclein aggregation is influenced by the presence of ATP, but not by the presence of GM1. ASG accelerated the α-synuclein aggregation in the cytoplasm. ASG also enhanced α-synuclein-induced cytotoxicity in yeast cells. This study demonstrated that ASG directly enhances aggregation and cytotoxicity of α-synuclein, which are often observed in patients with ALS/PDC. These results, using assays that replicate cytoplasmic conditions, are consistent with the molecular mechanism that cytotoxicity is caused by intracellular α-synuclein fibril formation in neuronal cells.  相似文献   
998.
We report an improved fluorescence-detected circular dichroism (FDCD)-based analytical method that is useful for probing protein three-dimensional structures. The method uses a novel FDCD device with an ellipsoidal mirror that functions on a standard circular dichroism (CD) spectrometer and eliminates all artifacts. Our experiments demonstrated three important findings. First, the method is applicable to any proteins either by using intrinsic fluorescence derived from tryptophan residues or by introducing a fluorescent label onto nonfluorescent proteins. Second, by using intrinsic fluorescence, FDCD spectroscopy can detect a structural change in the tertiary structure of metmyoglobin due to stepwise denaturation on a change in pH. Such changes could not be detected by conventional CD spectroscopy. Third, based on the typical advantages of fluorescence-based analyses, FDCD measurements enable observation of only the target proteins in a solution even in the presence of other peptides. Using our ellipsoidal mirror FDCD device, we could observe structural changes of fluorescently labeled calmodulin on binding with Ca2+ and/or interacting with binding peptides. Because FDCD appears to reflect the protein’s local structure around the fluorophore, it may provide a useful means for “pinpoint analysis” of protein structures.  相似文献   
999.
Complementarity-determining regions (CDRs) from monoclonal antibodies tested as synthetic peptides display anti-infective and antitumor activities, independent of the specificity of the native antibody. Previously, we have shown that the synthetic peptide C7H2, based on the heavy chain CDR 2 from monoclonal antibody C7, a mAb directed to a mannoprotein of Candida albicans, significantly reduced B16F10 melanoma growth and lung colony formation by triggering tumor apoptosis. The mechanism, however, by which C7H2 induced apoptosis in tumor cells remained unknown. Here, we demonstrate that C7H2 interacts with components of the tumor cells cytoskeleton, being rapidly internalized after binding to the tumor cell surface. Mass spectrometry analysis and in vitro validation revealed that β-actin is the receptor of C7H2 in the tumor cells. C7H2 induces β-actin polymerization and F-actin stabilization, linked with abundant generation of superoxide anions and apoptosis. Major phenotypes following peptide binding were chromatin condensation, DNA fragmentation, annexin V binding, lamin disruption, caspase 8 and 3 activation, and organelle alterations. Finally, we evaluated the cytotoxic efficacy of C7H2 in a panel of human tumor cell lines. All tumor cell lines studied were equally susceptible to C7H2 in vitro. The C7H2 amide without further derivatization significantly reduced lung metastasis of mice endovenously challenged with B16F10-Nex2 melanoma cells. No significant cytotoxicity was observed toward nontumorigenic cell lines on short incubation in vitro or in naïve mice injected with a high dose of the peptide. We believe that C7H2 is a promising peptide to be developed as an anticancer drug.  相似文献   
1000.
A series of quinoline-3-carbothioamides and their analogues was prepared via four synthetic routes and evaluated for their antinephritic and immunomodulating activities. The optimal compound 9g strongly inhibited the T-cell independent antibody production in mice immunized with TNP-LPS and was highly effective in two nephritis models, namely chronic graft-versus-host disease and autoimmune MRL/l mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号