首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   572篇
  免费   46篇
  2022年   6篇
  2021年   13篇
  2020年   5篇
  2019年   5篇
  2018年   4篇
  2017年   5篇
  2016年   11篇
  2015年   13篇
  2014年   26篇
  2013年   32篇
  2012年   20篇
  2011年   34篇
  2010年   17篇
  2009年   18篇
  2008年   32篇
  2007年   29篇
  2006年   27篇
  2005年   25篇
  2004年   19篇
  2003年   20篇
  2002年   23篇
  2001年   18篇
  2000年   17篇
  1999年   16篇
  1998年   4篇
  1997年   5篇
  1996年   8篇
  1995年   5篇
  1994年   6篇
  1992年   20篇
  1991年   20篇
  1990年   10篇
  1989年   10篇
  1988年   9篇
  1987年   8篇
  1986年   8篇
  1985年   10篇
  1984年   11篇
  1983年   7篇
  1981年   4篇
  1980年   3篇
  1979年   5篇
  1978年   4篇
  1977年   3篇
  1974年   2篇
  1973年   2篇
  1972年   4篇
  1971年   4篇
  1969年   2篇
  1968年   2篇
排序方式: 共有618条查询结果,搜索用时 15 毫秒
101.
102.
Rapid depletion of memory CD4+ T cells and delayed induction of neutralizing antibody (NAb) responses are characteristics of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections. Although it was speculated that postinfection NAb induction could have only a limited suppressive effect on primary HIV replication, a recent study has shown that a single passive NAb immunization of rhesus macaques 1 week after SIV challenge can result in reduction of viral loads at the set point, indicating a possible contribution of postinfection NAb responses to virus control. However, the mechanism accounting for this NAb-triggered SIV control has remained unclear. Here, we report rapid induction of virus-specific polyfunctional T-cell responses after the passive NAb immunization postinfection. Analysis of SIV Gag-specific responses of gamma interferon, tumor necrosis factor alpha, interleukin-2, macrophage inflammatory protein 1β, and CD107a revealed that the polyfunctionality of Gag-specific CD4+ T cells, as defined by the multiplicity of these responses, was markedly elevated in the acute phase in NAb-immunized animals. In the chronic phase, despite the absence of detectable NAbs, virus control was maintained, accompanied by polyfunctional Gag-specific T-cell responses. These results implicate virus-specific polyfunctional CD4+ T-cell responses in this NAb-triggered virus control, suggesting possible synergism between NAbs and T cells for control of HIV/SIV replication.Virus-specific CD4+ and CD8+ T-cell responses are crucial for the control of pathogenic human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) infections (5, 6, 20, 23, 30, 39, 40). However, CD4+ T cells, especially CCR5+ memory CD4+ T cells, are themselves targets for these viruses, which may be an obstacle to potent virus-specific CD4+ T-cell induction (10, 47, 52). Indeed, HIV-1/SIV infection causes rapid, massive depletion of memory CD4+ T cells (26, 31), and host immune responses fail to contain viral replication and allow persistent chronic infection, although virus-specific CD8+ T-cell responses exert suppressive pressure on viral replication (15).Recently, the importance of T-cell quality in virus containment has been high-lighted, and T-cell polyfunctionality, which is defined by their multiplicity of antigen-specific cytokine production, has been analyzed as an indicator of T-cell quality (4, 8, 11, 41). However, there has been no evidence indicating an association of polyfunctional T-cell responses in the acute phase with HIV-1/SIV control. Even in the chronic phase, whether polyfunctional CD4+ T-cell responses may be associated with virus control has been unclear, although an inverse correlation between polyfunctional CD8+ T-cell responses and viral loads has been shown in HIV-1-infected individuals (4).Another characteristic of HIV-1/SIV infections is the absence of potent neutralizing antibody (NAb) induction during the acute phase (7). This is mainly due to the unusually neutralization-resistant nature of the virus, such as masking of target epitopes in viral envelope proteins (24). Whether this lack of effective NAb response contributes to the failure to control the virus, and whether NAb induction in the acute phase can contribute to virus control, remains unclear. Previous studies documenting virus escape from NAb recognition suggested that NAbs can also exert selective pressure on viral replication to a certain extent (38, 45, 49), but it was speculated that postinfection NAb induction could have only a limited suppressive effect on primary HIV-1/SIV replication (34, 37).By passive NAb immunization of rhesus macaques after SIV challenge, we recently provided evidence indicating that the presence of NAbs during the acute phase can result in SIV control (50). In that study, passive NAb immunization 1 week after SIVmac239 challenge resulted in transient detectable NAb responses followed by reduction in set point viral loads compared to unimmunized macaques. However, the mechanism of this virus control has remained unclear. In the present study, we found rapid appearance of polyfunctional Gag-specific CD4+ T-cell responses after such passive NAb immunization postinfection. These animals maintained virus control for more than 1 year in the absence of detectable plasma NAbs, which was accompanied by potent Gag-specific T-cell responses. These results implicate virus-specific polyfunctional CD4+ T-cell responses in this NAb-triggered primary and long-term SIV control.  相似文献   
103.
A simple method for isolating the nuclei from Basidiobolus ranarum was established. To improve the yield and purity of nuclei, we investigated maceration methods, buffer composition, and centrifugation conditions to establish an optimal procedure. Basidiobolus ranarum cultured for 5 days was enzymatically macerated and then homogenized and filtrated through stainless steel sieves. The crude cell homogenate was loaded on a layer of buffer containing 50% glycerol and centrifuged at 1500 g. The resultant pellet contained pure nuclei.  相似文献   
104.
The Ca2+ release-activated Ca2+ channel is a principal regulator of intracellular Ca2+ rise, which conducts various biological functions, including immune responses. This channel, involved in store-operated Ca2+ influx, is believed to be composed of at least two major components. Orai1 has a putative channel pore and locates in the plasma membrane, and STIM1 is a sensor for luminal Ca2+ store depletion in the endoplasmic reticulum membrane. Here we have purified the FLAG-fused Orai1 protein, determined its tetrameric stoichiometry, and reconstructed its three-dimensional structure at 21-Å resolution from 3681 automatically selected particle images, taken with an electron microscope. This first structural depiction of a member of the Orai family shows an elongated teardrop-shape 150Å in height and 95Å in width. Antibody decoration and volume estimation from the amino acid sequence indicate that the widest transmembrane domain is located between the round extracellular domain and the tapered cytoplasmic domain. The cytoplasmic length of 100Å is sufficient for direct association with STIM1. Orifices close to the extracellular and intracellular membrane surfaces of Orai1 seem to connect outside the molecule to large internal cavities.Ca2+ is an intracellular second messenger that plays important roles in various physiological functions such as immune response, muscle contraction, neurotransmitter release, and cell proliferation. Intracellular Ca2+ is mainly stored in the endoplasmic reticulum (ER).2 This ER system is distributed through the cytoplasm from around the nucleus to the cell periphery close to the plasma membrane. In non-excitable cells, the ER releases Ca2+ through the inositol 1,4,5-trisphosphate (IP3) receptor channel in response to various signals, and the Ca2+ store is depleted. Depletion of Ca2+ then induces Ca2+ influx from outside the cell to help in refilling the Ca2+ stores and to continue Ca2+ rise for several minutes in the cytoplasm (1, 2). This Ca2+ influx was first proposed by Putney (3) and was named store-operated Ca2+ influx. In the immune system, store-operated Ca2+ influx is mainly mediated by the Ca2+ release-activated Ca2+ (CRAC) current, which is a highly Ca2+-selective inwardly rectified current with low conductance (4, 5). Pathologically, the loss of CRAC current in T cells causes severe combined immunodeficiency (6) where many Ca2+ signal-dependent gene expressions, including cytokines, are interrupted (7). Therefore, CRAC current is necessary for T cell functions.Recently, Orai1 (also called CRACM1) and STIM1 have been physiologically characterized as essential components of the CRAC channel (812). They are separately located in the plasma membrane and in the ER membrane; co-expression of these proteins presents heterologous CRAC-like currents in various types of cells (10, 1315). Both of them are shown to be expressed ubiquitously in various tissues (1618). STIM1 senses Ca2+ depletion in the ER through its EF hand motif (19) and transmits a signal to Orai1 in the plasma membrane. Although Orai1 is proposed as a regulatory component for some transient receptor potential canonical channels (20, 21), it is believed from the mutation analyses to be the pore-forming subunit of the CRAC channel (8, 2224). In the steady state, both Orai1 and STIM1 molecules are dispersed in each membrane. When store depletion occurs, STIM1 proteins gather into clusters to form puncta in the ER membrane near the plasma membrane (11, 19). These clusters then trigger the clustering of Orai1 in the plasma membrane sites opposite the puncta (25, 26), and CRAC channels are activated (27).Orai1 has two homologous genes, Orai2 and Orai3 (8). They form the Orai family and have in common the four transmembrane (TM) segments with relatively large N and C termini. These termini are demonstrated to be in the cytoplasm, because both N- and C-terminally introduced tags are immunologically detected only in the membrane-permeabilized cells (8, 9). The subunit stoichiometry of Orai1 is as yet controversial: it is believed to be an oligomer, presumably a dimer or tetramer even in the steady state (16, 2830).Despite the accumulation of biochemical and electrophysiological data, structural information about Orai1 is limited due to difficulties in purification and crystallization. In this study, we have purified Orai1 in its tetrameric form and have reconstructed the three-dimensional structure from negatively stained electron microscopic (EM) images.  相似文献   
105.
Nipah virus (NiV) P gene encodes P protein and three accessory proteins (V, C and W). It has been reported that all four P gene products have IFN antagonist activity when the proteins were transiently expressed. However, the role of those accessory proteins in natural infection with NiV remains unknown. We generated recombinant NiVs lacking V, C or W protein, rNiV(V−), rNiV(C−), and rNiV(W−), respectively, to analyze the functions of these proteins in infected cells and the implications in in vivo pathogenicity. All the recombinants grew well in cell culture, although the maximum titers of rNiV(V−) and rNiV(C−) were lower than the other recombinants. The rNiV(V−), rNiV(C−) and rNiV(W−) suppressed the IFN response as well as the parental rNiV, thereby indicating that the lack of each accessory protein does not significantly affect the inhibition of IFN signaling in infected cells. In experimentally infected golden hamsters, rNiV(V−) and rNiV(C−) but not the rNiV(W−) virus showed a significant reduction in virulence. These results suggest that V and C proteins play key roles in NiV pathogenicity, and the roles are independent of their IFN-antagonist activity. This is the first report that identifies the molecular determinants of NiV in pathogenicity in vivo.  相似文献   
106.
In innate immunity, cationic antimicrobial peptides including cathelin-related antimicrobial peptide (CRAMP) are known to play critical roles in protecting the host from infection by invasive microbes, including Gram-positive and -negative bacteria. However, little is known about the interactions between CRAMP and mycoplasmas. In the present study, the antimicrobial activity of CRAMP against M. pneumoniae and the expression of CRAMP in bronchoalveolar lavage fluid (BALF) of M. pneumoniae-infected mice was examined. CRAMP at 10-20 μg/mL reduced the growth of two strains of M. pneumoniae by 100 to 1000-fold. The amount of CRAMP in the BALF of M. pneumoniae-infected mice was 20~25 ng/mL by ELISA. The presence of mature CRAMP in BALF was observed by Western blotting. Neutrophils in BALF showed a fair amount of CRAMP in their cytoplasm by immunofluorescence. Furthermore, the addition of M. pneumoniae resulted in the release of a large amount of CRAMP from neutrophils induced by thioglycolate. These results suggest that CRAMP from neutrophils may play an important role in protection against M. pneumoniae infection.  相似文献   
107.
This paper reports the synthesis and insecticidal activity of a series of novel 4-hydroxy-3-mesityl-1-methoxymethoxy-1,5-dihydro-2H-pyrrol-2-one derivatives, in which the substituents at the 5-position were varied with a number of alkyl and spirocycloalkyl groups. Investigation of the structure-activity relationships revealed that small alkyl and spirocyclohexyl groups had a favorable effect on the insecticidal activity of these agents against Myzus persicae.  相似文献   
108.

Key message

RNAi-mediated suppression of the endogenous storage proteins in MucoRice-CTB-RNAi seeds affects not only the levels of overexpressed CTB and RAG2 allergen, but also the localization of CTB and RAG2.

Abstract

A purification-free rice-based oral cholera vaccine (MucoRice-CTB) was previously developed by our laboratories using a cholera toxin B-subunit (CTB) overexpression system. Recently, an advanced version of MucoRice-CTB was developed (MucoRice-CTB-RNAi) through the use of RNAi to suppress the production of the endogenous storage proteins 13-kDa prolamin and glutelin, so as to increase CTB expression. The level of the α-amylase/trypsin inhibitor-like protein RAG2 (a major rice allergen) was reduced in MucoRice-CTB-RNAi seeds in comparison with wild-type (WT) rice. To investigate whether RNAi-mediated suppression of storage proteins affects the localization of overexpressed CTB and major rice allergens, we generated an RNAi line without CTB (MucoRice-RNAi) and investigated gene expression, and protein production and localization of two storage proteins, CTB, and five major allergens in MucoRice-CTB, MucoRice-CTB-RNAi, MucoRice-RNAi, and WT rice. In all lines, glyoxalase I was detected in the cytoplasm, and 52- and 63-kDa globulin-like proteins were found in the aleurone particles. In WT, RAG2 and 19-kDa globulin were localized mainly in protein bodies II (PB-II) of the endosperm cells. Knockdown of glutelin A led to a partial destruction of PB-II and was accompanied by RAG2 relocation to the plasma membrane/cell wall and cytoplasm. In MucoRice-CTB, CTB was localized in the cytoplasm and PB-II. In MucoRice-CTB-RNAi, CTB was produced at a level six times that in MucoRice-CTB and was localized, similar to RAG2, in the plasma membrane/cell wall and cytoplasm. Our findings indicate that the relocation of CTB in MucoRice-CTB-RNAi may contribute to down-regulation of RAG2.  相似文献   
109.
Tacrolimus is widely used as an immunosuppressant in liver transplantation, and tacrolimus-induced acute kidney injury (AKI) is a serious complication of liver transplantation. For early detection of AKI, various urinary biomarkers such as monocyte chemotactic protein-1, liver-type fatty acid-binding protein, interleukin-18, osteopontin, cystatin C, clusterin and neutrophil gelatinase-associated lipocalin (NGAL) have been identified. Here, we attempt to identify urinary biomarkers for the early detection of tacrolimus-induced AKI in liver transplant patients. Urine samples were collected from 31 patients after living-donor liver transplantation (LDLT). Twenty recipients developed tacrolimus-induced AKI. After the initiation of tacrolimus therapy, urine samples were collected on postoperative days 7, 14, and 21. In patients who experienced AKI during postoperative day 21, additional spot urine samples were collected on postoperative days 28, 35, 42, 49, and 58. The 8 healthy volunteers, whose renal and liver functions were normal, were asked to collect their blood and spot urine samples. The urinary levels of NGAL, monocyte chemotactic protein-1 and liver-type fatty acid-binding protein were significantly higher in patients with AKI than in those without, while those of interleukin-18, osteopontin, cystatin C and clusterin did not differ between the 2 groups. The area under the receiver operating characteristics curve of urinary NGAL was 0.876 (95% confidence interval, 0.800–0.951; P<0.0001), which was better than those of the other six urinary biomarkers. In addition, the urinary levels of NGAL at postoperative day 1 (p = 0.0446) and day 7 (p = 0.0006) can be a good predictive marker for tacrolimus-induced AKI within next 6 days, respectively. In conclusion, urinary NGAL is a sensitive biomarker for tacrolimus-induced AKI, and may help predict renal event caused by tacrolimus therapy in liver transplant patients.  相似文献   
110.
Acrylamide was polymerized to give polyacrylamide using manganese peroxidase (MnP) produced by the basidiomycete Bjerkandera adusta. The molecular weight of the polymer synthesized by MnP was 155000, higher than those obtained with other reaction systems using horseradish peroxidase and a redox initiator. The 13C-NMR spectrum showed that polyacrylamide was atactic. Electron spin resonance analysis revealed that 2,4-pentanedione added as an initiator was first oxidized to generate a carbon-centered radical, which initiated radical additive polymerization of acrylamide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号