首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1155篇
  免费   79篇
  1234篇
  2023年   6篇
  2022年   17篇
  2021年   19篇
  2020年   9篇
  2019年   15篇
  2018年   36篇
  2017年   23篇
  2016年   38篇
  2015年   59篇
  2014年   73篇
  2013年   80篇
  2012年   106篇
  2011年   78篇
  2010年   62篇
  2009年   53篇
  2008年   94篇
  2007年   76篇
  2006年   55篇
  2005年   52篇
  2004年   56篇
  2003年   41篇
  2002年   45篇
  2001年   23篇
  2000年   32篇
  1999年   18篇
  1998年   9篇
  1997年   10篇
  1996年   5篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1991年   7篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1964年   1篇
排序方式: 共有1234条查询结果,搜索用时 15 毫秒
91.
We developed fluorescent biosensor systems that are either general or selective to fluoroquinolone antibiotics by using a single-chain variable-fragment (scFv) as a recognition element. The selectivity of these biosensors to fluoroquinolone antibiotics was rationally tuned through the structural modification on the pharmacophore of fluoroquinolone antibiotics and the subsequent selection of scFv receptor modules against these antibiotics-based antigens using phage display. The resulting A2 and F9 scFv's bound to their representative antigen with a moderate affinity (K(D) in micromolar range as determined by surface plasmon resonance). A2 is a specific binder for enrofloxacin and did not cross-react with other fluoroquinolone antibiotics including structurally similar ciprofloxacin, while F9 is a general fluoroquinolone binder that likely bound to the antigen at the common pyridone-carboxylic acid pharmacophore. These scFv-based receptors were successfully applied to the development of one-step fluorescent biosensor which can detect fluoroquinolone antibiotics at concentrations below the level suggested in animal drug application guidelines. The strategy described in this report can be applied to developing convenient field biosensors that can qualitatively detect overused/misused antibiotics in the livestock drinking water.  相似文献   
92.
Diblock copolymers composed of poly(epsilon-caprolactone) (PCL) and poly(N,N-dimethylamino-2-ethyl methacrylate) (PDMAEMA), or methoxy polyethylene glycol(PEG), were synthesized via a combination of ring-opening polymerization and atom-transfer radical polymerization in order to prepare polymeric nanoparticles as an antifungal drug carrier. Amphotericin B (AmB), a natural antibiotic, was incorporated into the polymeric nanoparticles. The physical properties of AmB-incorporated polymeric nanoparticles with PCL-b-PDMAEMA and PCL-b-PEG were studied in relation to morphology and particle size. In the aggregation state study, AmB-incorporated PCL-b- PDMAEMA nanoparticles exhibited a monomeric state pattern of free AmB, whereas AmB-incorporated PCL-b- PEG nanoparticles displayed an aggregated pattern. In in vitro hemolysis tests with human red blood cells, AmBincorporated PCL-b-PDMAEMA nanoparticles were seen to be 10 times less cytotoxic than free AmB (5 microgram/ml). In addition, an improved antifungal activity of AmBincorporated polymeric nanoparticles was observed through antifungal activity tests using Candida albicans, whereas polymeric nanoparticles themselves were seen not to affect activity. Finally, in vitro AmB release studies were conducted, proving the potential of AmB-incorporated PCL-b-PDMAEMA nanoparticles as a new formulation candidate for AmB.  相似文献   
93.
Shim J  Mackerell AD 《MedChemComm》2011,2(5):356-370
A significant number of drug discovery efforts are based on natural products or high throughput screens from which compounds showing potential therapeutic effects are identified without knowledge of the target molecule or its 3D structure. In such cases computational ligand-based drug design (LBDD) can accelerate the drug discovery processes. LBDD is a general approach to elucidate the relationship of a compound's structure and physicochemical attributes to its biological activity. The resulting structure-activity relationship (SAR) may then act as the basis for the prediction of compounds with improved biological attributes. LBDD methods range from pharmacophore models identifying essential features of ligands responsible for their activity, quantitative structure-activity relationships (QSAR) yielding quantitative estimates of activities based on physiochemical properties, and to similarity searching, which explores compounds with similar properties as well as various combinations of the above. A number of recent LBDD approaches involve the use of multiple conformations of the ligands being studied. One of the basic components to generate multiple conformations in LBDD is molecular mechanics (MM), which apply an empirical energy function to relate conformation to energies and forces. The collection of conformations for ligands is then combined with functional data using methods ranging from regression analysis to neural networks, from which the SAR is determined. Accordingly, for effective application of LBDD for SAR determinations it is important that the compounds be accurately modelled such that the appropriate range of conformations accessible to the ligands is identified. Such accurate modelling is largely based on use of the appropriate empirical force field for the molecules being investigated and the approaches used to generate the conformations. The present chapter includes a brief overview of currently used SAR methods in LBDD followed by a more detailed presentation of issues and limitations associated with empirical energy functions and conformational sampling methods.  相似文献   
94.
The cannabinoid (CB1) receptor is a member of the rhodopsin-like G protein-coupled receptor superfamily. The human CB1 receptor, which is among the most expressed receptors in the brain, has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. Different classes of CB1 agonists evoke signaling pathways through the activation of specific subtypes of G proteins. The molecular basis of CB1 receptor coupling to its cognate G protein is unknown. As a first step toward understanding CB1 receptor-mediated G protein signaling, we have constructed a ternary complex structural model of the CB1 receptor and Gi heterotrimer (CB1-Gi), guided by the x-ray structure of β2-adrenergic receptor (β2AR) in complex with Gs2AR-Gs), through 824-ns duration molecular dynamics simulations in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer environment. We identified a group of residues at the juxtamembrane regions of the intracellular loops 2 and 3 (IC2 and IC3) of the CB1 receptor, including Ile-2183.54, Tyr-224IC2, Asp-3386.30, Arg-3406.32, Leu-3416.33, and Thr-3446.36, as potential key contacts with the extreme C-terminal helix α5 of Gαi. Ala mutations of these residues at the receptor-Gi interface resulted in little G protein coupling activity, consistent with the present model of the CB1-Gi complex, which suggests tight interactions between CB1 and the extreme C-terminal helix α5 of Gαi. The model also suggests that unique conformational changes in the extreme C-terminal helix α5 of Gα play a crucial role in the receptor-mediated G protein activation.  相似文献   
95.
Pin1 binds mitotically phosphorylated Thr231–Pro232 and Thr212–Pro213 sites on tau, and a Pin1 deficiency in mice leads to tau hyperphosphorylation. The aim of this study was to determine if the dephosphorylation or inhibition of tau and GSK3β phosphorylation induces the Pin1 phosphorylation. To test this, human SK-N-MC cells were stably transfected with a fusion gene containing neuron-specific enolase (NSE)-controlled APPsw gene(NSE/APPsw), to induce Aβ-42. The stable transfectants were then transiently transfected with NSE/Splice, lacking human tau (NSE/Splice), or NSE/hTau, containing human tau, into the cells. The NSE/Splice- and NSE/hTau-cells were then treated with lithium. We concluded that (i) there was more C99-β APP accumulation than C83-βAPP in APPsw-tansfectant and thereby promoted Aβ-42 production in transfectants. (ii) the inhibition of tau and GSK3β phosphorylations correlated with increase in Pin1 activation in NSE/hTau- cells. Thus, these observations suggest that Pin1 might have an inhibitive role in phosphorylating tau and GSK3β for protecting against Alzheimer’s disease.  相似文献   
96.
Global reduction of DNA methylation, a part of genome reprogramming processes, occurs in a gradual manner until before implantation and is recognized as a conserved process in mammals. Here, we reported that in bovine, satellite regions exhibited varied patterns of methylation changes when one-cell egg advanced to the blastocyst; a maintenance methylation was observed in satellite I sequences, a decrease in alpha satellites, and an increase in satellite II regions. Cloned embryos exhibited similar changes for DNA methylation in the satellite I and alpha. We also observed that the satellite I and alpha sequences were methylated more in inner cell mass region of the blastocyst whereas the satellite II showed selective demethylation in this region. Together, these findings point that individual satellite sequences carry their own methylation patterns under the pressure of global demethylation, suggesting that local methylation control system acts on the satellite regions in early bovine embryos.  相似文献   
97.
A series of formylchromone derivatives were synthesized as PTP1B inhibitors and some of them were potent against PTP1B with IC50 values as low as 1.0 microM. They exhibited remarkable selectivity for PTP1B over other human PTPases. Kinetic studies revealed that formylchromone derivatives are irreversible and active site-directed inhibitors. Molecular modeling study identified the orientation of the inhibitor bound at the active site of PTP1B.  相似文献   
98.
Through the proteomic analysis using 2-dimensional electrophoresis, the nicotine addiction-associated proteins were extensively screened in the striatum of rat brains. The nicotine addiction was developed by repeated nicotine injection (0.4mg/kg s.c.), twice daily for 7 days, followed by one challenge injection after a 3 day withdrawal period, and then confirmed by observing a 2.3-fold increase in locomoter activity. The 3 up- and 4 down-regulated proteins were selected and identified to be zinc-finger binding protein-89 (ZBP-89), 2'3'-cyclic nucleotide 3'-phosphodiesterase 1, deoxyribonuclease 1-like 3 (DNase1l3), tandem pore domain halothane inhibited K(+) channel (THIK-2), brain-specific hyaluronan-binding protein (BRAL-1), death effector domain-containing DNA binding protein (DEDD), and brain-derived neurotrophic factor (BDNF) by mass spectrophotometric fingerprinting. Among them, the expression patterns of ZEB-89, DNase1l3, THIK-2, DEDD, and BDNF mRNAs were found to be coincident with those of cognate proteins, by using RT-PCR analysis. These proteins could be suggested as drug targets to develop a new therapy for nicotine-associated diseases, as well as the clues to understand the mechanism of nicotine.  相似文献   
99.
Cotesia plutellae polydnaviruses (CpBV) has a segmented genome consisting of multiple circular double stranded DNAs. Recently, we have developed an easy, simple, and convenient system based on Tn7 transposition in order to clone genomic segments of CpBV in Escherichia coli cell and designated plasmid capture system (PCS). The PCS donor-S transferred a pUC19 origin of replication and an ampicillin resistance marker into CpBV genomic DNA by in vitro transposition. Through PCS system, we were able to clone 53 genomic clones ranging from 0.1 to 25.5 kb and further they were classified into 29 segments by their sizes and restriction endonuclease patterns. Among them, a complete nucleotide sequence of CpBV-S28 segment was determined and 10 putative genes were predicted from this segment. Interestingly, 9 of 10 putative ORFs had high level of similarities with catalytic domain of protein tyrosine phosphatase. Also, ORF2807 showed similarity with EP1-like proteins of C. congregata polydnavirus.  相似文献   
100.
The auditory sensory epithelium (organ of Corti), where sound waves are converted to electrical signals, comprises a highly ordered array of sensory receptor (hair) cells and nonsensory supporting cells. Here, we report that Sprouty2, which encodes a negative regulator of signaling via receptor tyrosine kinases, is required for normal hearing in mice, and that lack of SPRY2 results in dramatic perturbations in organ of Corti cytoarchitecture: instead of two pillar cells, there are three, resulting in the formation of an ectopic tunnel of Corti. We demonstrate that these effects are due to a postnatal cell fate transformation of a Deiters' cell into a pillar cell. Both this cell fate change and hearing loss can be partially rescued by reducing Fgf8 gene dosage in Spry2 null mutant mice. Our results provide evidence that antagonism of FGF signaling by SPRY2 is essential for establishing the cytoarchitecture of the organ of Corti and for hearing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号