首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   5篇
  47篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2017年   4篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2005年   7篇
  2004年   2篇
  2003年   1篇
  2000年   3篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1978年   1篇
  1955年   1篇
排序方式: 共有47条查询结果,搜索用时 5 毫秒
21.
In periodontitis, polymorphonuclear leucocytes (PMNs) are activated. They entrap and eliminate pathogens by releasing neutrophil extracellular traps (NETs). Abnormal NET degradation is part of a pro-inflammatory status, affecting co-morbidities such as cardiovascular disease. We aimed to investigate the ex vivo NET degradation capacity of plasma from periodontitis patients compared to controls (part 1) and to quantify NET degradation before and after periodontal therapy (part 2). Fresh NETs were obtained by stimulating blood-derived PMNs with phorbol 12-myristate 13-acetate. Plasma samples from untreated periodontitis patients and controls were incubated for 3 h onto freshly generated NETs (part 1). Similarly, for part 2, NET degradation was studied for 91 patients before and 3, 6 and 12 mo after non-surgical periodontal therapy with and without adjunctive systemic antibiotics. Finally, NET degradation was fluorospectrometrically quantified. NET degradation levels did not differ between periodontitis patients and controls, irrespective of subject-related background characteristics. NET degradation significantly increased from 65.6 ± 1.7% before periodontal treatment to 75.7 ± 1.2% at 3 mo post periodontal therapy, and this improvement was maintained at 6 and 12 mo, irrespective of systemic usage of antibiotics. Improved NET degradation after periodontitis treatment is another systemic biomarker reflecting a decreased pro-inflammatory status, which also contributes to an improved cardiovascular condition.  相似文献   
22.
23.
The avrBs2 avirulence gene of the bacterial plant pathogen Xanthomonas campestris pv. vesicatoria triggers disease resistance in pepper plants containing the Bs2 resistance gene and contributes to bacterial virulence on susceptible host plants. We studied the effects of the pepper Bs2 gene on the evolution of avrBs2 by characterizing the molecular basis for virulence of 20 X. campestris pv. vesicatoria field strains that were isolated from disease spots on previously resistant Bs2 pepper plants. All field strains tested were complemented by a wild-type copy of avrBs2 in their ability to trigger disease resistance on Bs2 plants. DNA sequencing revealed four mutant alleles of avrBs2, two of which consisted of insertions or deletions of 5 nucleotides in a repetitive region of avrBs2. The other two avrBs2 alleles were characterized by point mutations with resulting single amino acid changes (R403P or A410D). We generated isogenic X. campestris pv. vesicatoria strains by chromosomal avrBs2 gene exchange to study the effects of these mutations on the dual functions of avrBs2 in enhancing bacterial virulence and inducing plant resistance by in planta bacterial growth experiments. The deletion of 5 nucleotides led to loss of avrBs2-induced resistance on Bs2 pepper plants and abolition of avrBs2-mediated enhancement of fitness on susceptible plants. Significantly, the point mutations led to minimal reduction in virulence function of avrBs2 on susceptible pepper plants, with either minimal (R403P allele) or an intermediate level of (A410D allele) triggering of resistance on Bs2 plants. Consistent with the divergent selection pressures on avrBs2 exerted by the Bs2 resistance gene, our results show that avrBs2 is evolving to decrease detection by the Bs2 gene while at the same time maintaining its virulence function.  相似文献   
24.
25.
Four Xanthomonas species are known to cause bacterial spot of tomato and pepper, but the global distribution and genetic diversity of these species are not well understood. A collection of bacterial spot-causing strains from the Americas, Africa, Southeast Asia, and New Zealand were characterized for genetic diversity and phylogenetic relationships using multilocus sequence analysis of six housekeeping genes. By examining strains from different continents, we found unexpected phylogeographic patterns, including the global distribution of a single multilocus haplotype of X. gardneri, possible regional differentiation in X. vesicatoria, and high species diversity on tomato in Africa. In addition, we found evidence of multiple recombination events between X. euvesicatoria and X. perforans. Our results indicate that there have been shifts in the species composition of bacterial spot pathogen populations due to the global spread of dominant genotypes and that recombination between species has generated genetic diversity in these populations.  相似文献   
26.
Pulmonary acariasis is a sporadic, incidental finding in colony‐raised rhesus macaques (Macaca mulatta). Prophylactic treatment in indoor‐raised and indoor‐housed macaques is not routine due to low prevalence, lack of clinical significance, and potential risk of toxicosis. This case is an unusually severe infestation of Pneumonyssus simicola in an indoor‐housed rhesus macaque, which ultimately resulted in this animal's death.  相似文献   
27.
Bacterial spot, one of the most damaging diseases of pepper, is caused by Xanthomonas euvesicatoria. This pathogen has worldwide distribution and it is particularly devastating in tropical and sub-tropical regions where high temperatures and frequent precipitation provide ideal conditions for disease development. Three dominant resistance genes have been deployed singly and in combination in commercial cultivars, but have been rendered ineffectual by the high mutation rate or deletion of the corresponding cognate effector genes. These genes are missing in race P6, and their absence makes this race virulent on all commercial pepper cultivars. The breeding line ECW12346 is the only source of resistance to race P6 in Capsicum annuum, and displays a non-hypersensitive type of resistance. Characterization of this resistance has identified two recessive genes: bs5 and bs6. Individual analysis of these genes revealed that bs5 confers a greater level of resistance than bs6 at 25°C, but in combination they confer full resistance to P6 indicating at least additive gene action. Tests carried out at 30°C showed that both resistances are compromised to a significant extent, but in combination they provide almost full resistance to race P6 indicating a positive epistatic interaction at high temperatures. A scan of the pepper genome with restriction fragment length polymorphism and AFLP markers led to the identification of a set of AFLP markers for bs5. Allele-specific primers for a PCR-based bs5-marker have been developed to facilitate the genetic manipulation of this gene.  相似文献   
28.

Background  

Evolutionary rates are not constant across the human genome but genes in close proximity have been shown to experience similar levels of divergence and selection. The higher-order organisation of chromosomes has often been invoked to explain such phenomena but previously there has been insufficient data on chromosome structure to investigate this rigorously. Using the results of a recent genome-wide analysis of open and closed human chromatin structures we have investigated the global association between divergence, selection and chromatin structure for the first time.  相似文献   
29.
Tn5 insertion mutants of Xanthomonas campestris pv. vesicatoria were inoculated into tomato and screened for reduced virulence. One mutant exhibited reduced aggressiveness and attenuated growth in planta. Southern blot analyses indicated that the mutant carried a single Tn5 insertion not associated with previously cloned pathogenicity-related genes of X. campestris pv. vesicatoria. The wild-type phenotype of this mutant was restored by one recombinant plasmid (pOPG361) selected from a genomic library of X. campestris pv. vesicatoria 91-118. Tn3-gus insertion mutagenesis and sequence analyses of a subclone of pOPG361 identified a 1,929-bp open reading frame (ORF) essential for complementation of the mutants. The predicted protein encoded by this ORF was highly homologous to the previously reported pathogenicity-related HrpM protein of Pseudomonas syringae pv. syringae and OpgH of Erwinia chrysanthemi. Based on homology, the new locus was designated opgHXcv. Manipulation of the osmotic potential in the intercellular spaces of tomato leaves by addition of mannitol at low concentrations (25 to 50 mM) compensates for the opgHXcv mutation.  相似文献   
30.
Strains of tomato race 3 (T3) of Xanthomonas campestris pv. vesicatoria elicit a hypersensitive response (HR) in leaves of Lycopersicon pennellii LA716. Genetic segregation of the resistance exhibited ratios near 3:1 in F2 populations, which confirmed that a single dominant gene controlled the inheritance of this trait. With the aid of a collection of introgression lines, restriction fragment length polymorphism, and cleaved amplified polymorphic sequence markers, the resistance locus was located on chromosome 3 between TG599 and TG134. An avirulence gene named avrXv4 was also isolated by mobilizing a total of 600 clones from a genomic DNA library of the T3 strain 91-118 into the X. campestris pv. vesicatoria strain ME90, virulent on L. pennellii. One cosmid clone, pXcvT3-60 (29-kb insert), induced HR in resistant plants. The avirulent phenotype of pXcvT3-60 was confirmed by comparing growth rates in planta and electrolyte leakages among transconjugants carrying a mutated or intact clone with the wild-type T3 strain 91-118. A 1.9-kb DNA fragment contained within a 6.8-kb active subclone was sequenced and was determined to carry an open reading frame of 1,077 bp. The predicted AvrXv4 protein exhibits high similarity to members of an emerging new family of bacterial proteins from plant and mammalian pathogens comprising AvrRxv, AvrBsT, YopJ, YopP, AvrA, and YL40.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号