首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2506篇
  免费   117篇
  2623篇
  2022年   6篇
  2021年   13篇
  2020年   15篇
  2019年   27篇
  2018年   28篇
  2017年   23篇
  2016年   39篇
  2015年   58篇
  2014年   68篇
  2013年   245篇
  2012年   161篇
  2011年   157篇
  2010年   81篇
  2009年   110篇
  2008年   151篇
  2007年   137篇
  2006年   140篇
  2005年   144篇
  2004年   156篇
  2003年   155篇
  2002年   142篇
  2001年   31篇
  2000年   31篇
  1999年   33篇
  1998年   31篇
  1997年   34篇
  1996年   26篇
  1995年   30篇
  1994年   32篇
  1993年   26篇
  1992年   32篇
  1991年   14篇
  1990年   12篇
  1989年   22篇
  1988年   15篇
  1987年   13篇
  1986年   8篇
  1985年   12篇
  1984年   19篇
  1983年   6篇
  1982年   11篇
  1981年   22篇
  1980年   10篇
  1979年   9篇
  1978年   6篇
  1977年   12篇
  1976年   9篇
  1975年   6篇
  1974年   7篇
  1973年   10篇
排序方式: 共有2623条查询结果,搜索用时 15 毫秒
61.
Mitotic chromosomes of the plant pathogenic filamentous fungi Botrytis cinerea and Alternaria alternata were observed. Chromosomes prepared by the germ tube burst method were stained with the fluorescent dye 4,6-diamidino-2-phenylindole (DAPI) to yield figures with good resolution. Using this method, component chromosomes were clearly distinguished and the chromosome number could be determined. Fluorescence in situ hybridization (FISH) was also successfully applied to the specimens, revealing one ribosomal RNA gene cluster, or nucleolus organizer region (NOR) in the genome of each fungus. A long attenuated chromatid thread expanding from a condensed metaphase chromosome, which had been called a thread-like structure in B. cinerea, was proved to be an NOR. This is the first report of the successful application of FISH to the chromosomes of filamentous fungi.  相似文献   
62.
Summary Injection of wheat-germ agglutinin-horseradish peroxidase conjugate (WGA-HRP) into the superior cervical ganglion (SCG) of the rat results in accumulation of WGA-HRP in sympathetic postganglionic neurons in the contralateral SCG. The sympathetic pathways involved and the mechanism underlying the labeling were investigated. The labeling in neurons in the contralateral SCG was apparent 6 h after injection and increased in intensity with longer survival times. The number of labeled neurons reached 1300 at 72 h after the injection. Transection of the external (ECN) or internal carotid nerves (ICN) resulted in considerable reduction in the number of labeled neurons. Combined transection of both ECN and ICN virtually eliminated labeling in the contralateral SCG. This provides strong evidence that these two nerves are the major pathways for WGA-HRP transport out of the SCG. No labeling was observed in the contralateral SCG following injection of horseradish peroxidase (HRP). Therefore, it seems unlikely that a direct nerve connection exists between the bilateral ganglia. Instead, the labeling of contralateral SCG neurons appears to depend on the transneuronal transport capacity of WGA-HRP, which conveys the marker in an anterograde direction along the postganglionic fibers to terminals in sympathetic target organs, and then delivers it transneuronally to contralateral SCG neurons. We suggest that the sympathetic nerve fibers originating in the bilateral SCGs run intermingled and are in close contact in their peripheral target organs.  相似文献   
63.
Bioassay-guided separation by use of the fission yeast expressing NES of Rev, an HIV-1 viral regulatory protein, disclosed 1′-acetoxychavicol acetate (ACA, 1) as a new inhibitor for nuclear export of Rev from the roots of Alpinia galanga. Both analysis for mechanism of action with biotinylated probe (2) and several synthesized analogs established crucial portions in 1 for Rev-export inhibitory activity.  相似文献   
64.
Both insulin and the cell death-inducing DNA fragmentation factor-α-like effector (CIDE) family play important roles in apoptosis and lipid droplet formation. However, regulation of the CIDE family by insulin and the contribution of the CIDE family to insulin actions remain unclear. Here, we investigated whether insulin regulates expression of the CIDE family and which subtypes contribute to insulin-induced anti-apoptosis and lipid droplet formation in human adipocytes. Insulin decreased CIDEA and increased CIDEC but not CIDEB mRNA expression. Starvation-induced apoptosis in adipocytes was significantly inhibited when insulin decreased the CIDEA mRNA level. Small interfering RNA-mediated depletion of CIDEA inhibited starvation-induced apoptosis similarly to insulin and restored insulin deprivation-reduced adipocyte number, whereas CIDEC depletion did not. Lipid droplet size of adipocytes was increased when insulin increased the CIDEC mRNA level. In contrast, insulin-induced enlargement of lipid droplets was markedly abrogated by depletion of CIDEC but not CIDEA. Furthermore, depletion of CIDEC, but not CIDEA, significantly increased glycerol release from adipocytes. These results suggest that CIDEA and CIDEC are novel genes regulated by insulin in human adipocytes and may play key roles in the effects of insulin, such as anti-apoptosis and lipid droplet formation.  相似文献   
65.
We compared the removal by solution, the represented count-area method and the beating, for the purpose of estimating the number of the Cryptomeria red mite. Among them the solution procedure provided the smallest standard error as per cent of the mean. 0.25 per cent unheated solution of sodium hydroxide is used for the summer generation, and also 0.25 per cent boiling one for the winter eggs. The mean proportion removed±standard error for the summer eggs and the winter eggs were 0.8770±0.0316 and 0.7920±0.0281 respectively, while 0.9894±0.0050 for the mites.  相似文献   
66.
A new bacterial strain capable of producing cellulose was isolated from a hot spring. The isolate was Gram-negative, aerobic, and rod-shaped. The optimum temperature for growth was 40-45 degrees C. Methanol, glucose and other common carbohydrates were not utilized as sole growth substrates. Thiosulfate was not oxidized. The G+C content of the DNA was determined to be 64.0 mol%. Comparative 16S rDNA analysis indicated that Bosea thiooxidans and some strains of the genus Methylobacterium were the nearest relatives. The isolate can be distinguished from these relatives by its defectiveness in methanol utilization and thiosulfate oxidation. On the basis of its phenotypic properties and phylogeny, it is proposed that the isolate be designated Balneomonas flocculans gen. nov., sp. nov. The type strain is TFBT (= JCM 11936T, = KCTC 12101T, = IAM 15034T, = ATCC BAA-817T).  相似文献   
67.

Background

Heparan sulfate (HS) is present on the surface of virtually all mammalian cells and is a major component of the extracellular matrix (ECM), where it plays a pivotal role in cell-cell and cell-matrix cross-talk through its large interactome. Disruption of HS biosynthesis in mice results in neonatal death as a consequence of malformed lungs, indicating that HS is crucial for airway morphogenesis. Neonatal mortality (~50%) in newborns with congenital diaphragmatic hernia (CDH) is principally associated with lung hypoplasia and pulmonary hypertension. Given the importance of HS for lung morphogenesis, we investigated developmental changes in HS structure in normal and hypoplastic lungs using the nitrofen rat model of CDH and semi-synthetic bacteriophage ('phage) display antibodies, which identify distinct HS structures.

Results

The pulmonary pattern of elaborated HS structures is developmentally regulated. For example, the HS4E4V epitope is highly expressed in sub-epithelial mesenchyme of E15.5 - E17.5 lungs and at a lower level in more distal mesenchyme. However, by E19.5, this epitope is expressed similarly throughout the lung mesenchyme. We also reveal abnormalities in HS fine structure and spatiotemporal distribution of HS epitopes in hypoplastic CDH lungs. These changes involve structures recognised by key growth factors, FGF2 and FGF9. For example, the EV3C3V epitope, which was abnormally distributed in the mesenchyme of hypoplastic lungs, is recognised by FGF2.

Conclusions

The observed spatiotemporal changes in HS structure during normal lung development will likely reflect altered activities of many HS-binding proteins regulating lung morphogenesis. Abnormalities in HS structure and distribution in hypoplastic lungs can be expected to perturb HS:protein interactions, ECM microenvironments and crucial epithelial-mesenchyme communication, which may contribute to lung dysmorphogenesis. Indeed, a number of epitopes correlate with structures recognised by FGFs, suggesting a functional consequence of the observed changes in HS in these lungs. These results identify a novel, significant molecular defect in hypoplastic lungs and reveals HS as a potential contributor to hypoplastic lung development in CDH. Finally, these results afford the prospect that HS-mimetic therapeutics could repair defective signalling in hypoplastic lungs, improve lung growth, and reduce CDH mortality.  相似文献   
68.
Intramolecular M(II)H–C interactions (M(II)=Cu(II), Pd(II)) involving a side chain alkyl group of planar d8 and d9 metal complexes of the N-alkyl (R) derivatives of N,N-bis(2-pyridylmethyl)amine with an N3Cl donor set were established by structural and spectroscopic methods. The methyl group from the branched alkyl group (R = 2,2-dimethylpropyl and 2-methylbutyl) axially interacts with the metal ion with the MC and MH distances of 3.056(3)–3.352(9) and 2.317(1)–2.606(1) Å, respectively, and the M–H–C angles of 122.4–162.3°. The Cu(II) complexes showing the interaction have a higher redox potential as compared with those without it, and the 1H NMR signals of the interacting methyl group in Pd(II) complexes shifted downfield relative to the ligand signals. Dependence of the downshift values on the dielectric constants of the solvents used indicated that the M(II)H–C interaction is mainly electrostatic in nature and may be regarded as a weak hydrogen bond. Implications for possible environmental effects of the leucine alkyl group at the type 1 Cu site of fungal laccase are also discussed.  相似文献   
69.
Abnormalities in energy metabolism may play an important role in the development of hypertensive heart failure. However, the transition from compensated hypertrophy to heart failure is not fully understood in terms of energy metabolism. In Dahl salt-sensitive (DS) and salt-resistant (DR) rats, myocardial fatty acid and glucose uptake values were determined using (131)I- or (125)I-labeled 9-methylpentadecanoic acid ((131)I- or (125)I-9MPA), and [(14)C]deoxyglucose ([(14)C]DG), fatty acid beta-oxidation was identified using thin-layer chromatography, and insulin-stimulated glucose-uptake was observed using a euglycemic hyperinsulinemic glucose clamp. Six-week-old rats were fed a diet that contained 8% NaCl, which resulted in development of compensated hypertrophy in DS rats at 12 wk of age and ultimately led to heart failure by 18 wk of age. Uptake of [(14)C]DG increased markedly with age in the DS rats, whereas (131)I-9MPA uptake was marginally but significantly increased only in animals aged 12 wk. The ratio of (125)I-9MPA beta-oxidation metabolites to total uptake in the DS rats was significantly lower (P < 0.05) at 12 (37%) and 18 (34%) wk compared with at 6 (45%) wk. Insulin increased [(14)C]DG uptake more than twofold in the DS rats at 6 wk, although this increase was markedly attenuated at 12 and 18 wk (11 and 8%, respectively). Our data suggest that in a hypertrophied heart before heart failure, fatty acid oxidation is impaired and the capacity to increase glucose uptake during insulin stimulation is markedly reduced. These changes in both glucose and fatty acid metabolism that occur in association with myocardial hypertrophy may have a pathogenic role in the subsequent development of heart failure.  相似文献   
70.
Parturition is a complex mammalian physiological process whose fundamental determinants have remained elusive. The increasing incidence of human preterm birth, a leading cause of infant mortality, highlights the importance of further understanding mechanisms regulating the timing of birth. Parturition is initiated in most nonprimate mammals, including mice, through a decrease in circulating progesterone caused by elevated prostaglandins. In humans, other higher primates, and guinea pigs, no consistent decrease in circulating progesterone occurs before the onset of labor. The divergence in endocrine control of labor initiation between most mammals compared with the great apes and guinea pigs gives rise to the question: how could a mechanism for the initiation of labor not requiring the withdrawal of progesterone evolve? Here, we genetically modulate prostaglandin signaling to determine the role of prostaglandin catabolism in the timing of birth. We find spontaneous preterm labor in the absence of progesterone withdrawal in 15-hydroxyprostaglandin dehydrogenase hypomorphic mice. The onset of labor in these hypomorphic mice is preceded by prematurely increased concentrations of prostaglandin E(2) and F(2alpha). Moreover, genetic crosses demonstrate a role for fetal genotype in birth timing. Together, these findings demonstrate a 15-hydroxyprostaglandin dehydrogenase-dependent shift in the physiology of murine parturition to one resembling the physiology of higher primates. Thus, endocrine control of labor has the capacity to plastically adapt to changes in genetically determined prostaglandin signals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号