首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3088篇
  免费   185篇
  2022年   11篇
  2021年   23篇
  2020年   18篇
  2019年   31篇
  2018年   39篇
  2017年   31篇
  2016年   55篇
  2015年   78篇
  2014年   81篇
  2013年   275篇
  2012年   189篇
  2011年   195篇
  2010年   100篇
  2009年   122篇
  2008年   171篇
  2007年   160篇
  2006年   164篇
  2005年   160篇
  2004年   168篇
  2003年   171篇
  2002年   167篇
  2001年   51篇
  2000年   58篇
  1999年   47篇
  1998年   44篇
  1997年   38篇
  1996年   41篇
  1995年   40篇
  1994年   33篇
  1993年   35篇
  1992年   48篇
  1991年   41篇
  1990年   21篇
  1989年   41篇
  1988年   24篇
  1987年   17篇
  1986年   21篇
  1985年   17篇
  1984年   25篇
  1983年   13篇
  1982年   18篇
  1981年   28篇
  1980年   16篇
  1979年   15篇
  1978年   12篇
  1977年   14篇
  1973年   11篇
  1971年   9篇
  1969年   12篇
  1966年   9篇
排序方式: 共有3273条查询结果,搜索用时 15 毫秒
841.
The Cdc25 phosphatase promotes entry into mitosis through the removal of inhibitory phosphorylations on the Cdc2 subunit of the Cdc2/CyclinB complex. During interphase, or after DNA damage, Cdc25 is suppressed by phosphorylation at Ser287 (Xenopus numbering; Ser216 of human Cdc25C) and subsequent binding of the small acidic protein, 14-3-3. As reported recently, at the time of mitotic entry, 14-3-3 protein is removed from Cdc25 and S287 is dephosphorylated by protein phosphatase 1 (PP1). After the initial activation of Cdc25 and consequent derepression of Cdc2/CyclinB, Cdc25 is further activated through a Cdc2-catalyzed positive feedback loop. Although the existence of such a loop has been appreciated for some time, the molecular mechanism for this activation has not been described. We report here that phosphorylation of S285 by Cdc2 greatly enhances recruitment of PP1 to Cdc25, thereby accelerating S287 dephosphorylation and mitotic entry. Moreover, we show that two other previously reported sites of Cdc2-catalyzed phosphorylation on Cdc25 are required for maximal biological activity of Cdc25, but they do not contribute to PP1 regulation and do not act solely through controlling S287 phosphorylation. Therefore, multiple mechanisms, including enhanced recruitment of PP1, are used to promote full activation of Cdc25 at the time of mitotic entry.  相似文献   
842.
MOTIVATION: Carbohydrate sugar chains, or glycans, are considered the third major class of biomolecules after DNA and proteins. They consist of branching monosaccharides, starting from a single monosaccharide. They are extremely vital to the development and functioning of multicellular organisms because they are recognized by various proteins to allow them to perform specific functions. Our motivation is to study this recognition mechanism using informatics techniques from the data available. Previously, we introduced a probabilistic sibling-dependent tree Markov model (PSTMM), which we showed could be efficiently trained on sibling-dependent tree structures and return the most likely state paths. However, it had some limitations in that the extra dependency between siblings caused overfitting problems. The retrieval of the patterns from the trained model also involved manually extracting the patterns from the most likely state paths. Thus we introduce a profilePSTMM model which avoids these problems, incorporating a novel concept of different types of state transitions to handle parent-child and sibling dependencies differently. RESULTS: Our new algorithms are more efficient and able to extract the patterns more easily. We tested the profilePSTMM model on both synthetic (controlled) data as well as glycan data from the KEGG GLYCAN database. Additionally, we tested it on glycans which are known to be recognized and bound to proteins at various binding affinities, and we show that our results correlate with results published in the literature.  相似文献   
843.
844.
BACKGROUND: Interleukin-21 (IL-21) plays important roles in the regulation of T, B, and natural killer (NK) cells. We hypothesized that the cytokine may provide a novel immunotherapy strategy for cancer by stimulating both Th1 and Th2 immune responses. In this context, antitumor immunity induced by IL-21 was examined in mice bearing subcutaneous head and neck squamous cell carcinomas (HNSCC). METHODS: A plasmid vector encoding murine IL-21 was injected intravenously into mice with pre-established HNSCC tumors, either alone or in combination with a vector construct expressing IL-15. Cytotoxic T lymphocyte (CTL) and NK killing activities were evaluated by chrome release assays, while HNSCC-specific antibody was examined by flow cytometry and ELISA. RESULTS: Significant antitumor effects were obtained by repeated transfection with either the IL-21 or the IL-15 gene. Co-administration of both cytokine genes resulted in increased suppression of tumor growth, significantly prolonging the survival periods of the animals. Thirty percent of the tumor-bearing mice that received the combination therapy survived for more than 300 days, completely rejecting rechallenge with the tumor at a distant site. IL-21 induced significant elevation of HNSCC-specific CTL activity, while IL-21 and IL-15 augmented NK activity in an additive manner. IL-21 gene transfer also promoted the production of tumor-specific IgG. CONCLUSIONS: In vivo transduction of the IL-21 gene elicits powerful antitumor immunity, including both humoral and cellular arms of the immune response, and results in significant suppression of pre-established HNSCC. Co-transfer of the IL-15 gene further improved the therapeutic outcome, mainly by augmenting NK tumoricidal activity. The biological effects of IL-21 may be in sharp contrast to those of conventional Th1 and Th2 cytokines, suggesting intriguing implications of this cytokine for the classical concept of Th1 vs. Th2 paradigm.  相似文献   
845.
The entomopathogenic fungus Cordyceps militaris belongs to vegetable wasps and plant worms and is used as herbal medicine, but β-1,3-glucan biosynthesis has been poorly studied in C. militaris. The fungal FKS1 gene encodes an integral membrane protein that is the catalytic subunit of β-1,3-glucan synthase. Here, we isolated cDNA clones encoding a full-length open reading frame of C. militaris FKS1. Cordyceps militaris Fks1 protein is a 1981 amino acid protein that shows significant similarity with other fungal Fks proteins. This study is the first report of molecular cloning of the β-1,3-glucan synthase catalytic subunit gene from vegetable wasps and plant worms.  相似文献   
846.
847.
The influence of bone morphogenetic protein-2 (BMP-2) and transforming growth factor (TGF-) on the expression of small proteoglycans, decorin and biglycan was investigated in a clonal rat osteoblastic cell line, ROS-C26 (C26) cells, which is a potential osteoblast precursor cell line and capable of differentiating into mature osteoblasts after treatment with recombinant BMP-2 (rhBMP-2). Following the culture of C26 cells for 3, 6, and 9 days in the presence or absence of rhBMP-2, alkaline phosphatase activity increased in the rhBMP-2 treated cells in direct proportion to their differentiation into more mature osteoblastic cells, whereas decorin mRNA decreased in the cells, when compared to control cells without rhBMP-2 treatment. These results were evident 6 days after treatment. However, rhBMP-2 treatment had no effect on biglycan mRNA expression in the cells. Subsequently, after removal of rhBMP-2 from the culture media, the cells were further cultured for 24h with graded concentrations of TGF-1 (0, 0.1, 1.0, 5.0, and 10ng/ml). TGF-1 decreased decorin mRNA expression in the cells dose dependently, but did not affect their biglycan mRNA expression. Furthermore, either removal of rhBMP-2 from the culture media or addition of TGF-1 significantly decreased alkaline phosphatase activity of rhBMP-2-induced cells. These results indicate that osteoblastic differentiation is accompanied by increased alkaline phosphatase activity and decreased expression of decorin mRNA, but continuous expression of biglycan mRNA. Both rhBMP-2 and TGF-1 inhibit decorin mRNA expression in osteoblasts at varying stages of differentiation, but their effects on biglycan mRNA expression and alkaline phosphatase are different.  相似文献   
848.
Deposition of aggregated amyloid beta-protein (Abeta), a proteolytic cleavage product of the amyloid precursor protein (Abeta ), is a critical step in the development of Alzheimer's disease(Abeta++). However, we are far from understanding the molecular mechanisms underlying the initiation of Abeta polymerization in vivo. Here, we report that a seeding Abeta, which catalyzes the fibrillogenesis of soluble Abeta, is generated from the apically missorted amyloid precursor protein in cultured epithelial cells. Furthermore, the generation of this Abeta depends exclusively on the presence of cholesterol in the cells. Taken together with mass spectrometric analysis of this novel Abeta and our recent study (3), it is suggested that a conformationally altered form of Abeta, which acts as a "seed" for amyloid fibril formation, is generated in intracellular cholesterol-rich microdomains.  相似文献   
849.
A small catchment on the Swedish West Coast has been studied over four years to determine S dynamics by using S isotope ratios. A Norway spruce dominated forest covers the catchment, and small peat areas occur in the lower parts of the catchment. The runoff values varied both during the year, and from year to year. Over the period from February 1990 to December 1993, the values ranged from — 1%. to +11%. Over the same period, the throughfall values ranged from +1%. to +15%. There was no correlation (r 2= 0.01; Pr(F)=0.57) between values in throughfall and runoff. Since the only input of S to the catchment is atmospheric deposition, the long-term runoff S mass flux is controlled by the deposition. Therefore, processes in the catchment are responsible for the variation in the runoff values. During periods with enriched runoff, bacterial dissimilatory SO 4 2– reduction occurs in the catchment. After very dry periods, oxidation of this reduced S, which is32S-enriched, can be traced in runoff. Previous studies of the catchment have not been able to distinguish between: 1) oxidation of reduced S and dry deposition, and 2) reduction and adsorption. From the current study, it can be concluded that adsorption and dry deposition cannot cause the observed variation in runoff .  相似文献   
850.
Activation of the phagocyte NADPH oxidase involves assembly of p47(phox), p67(phox), Rac, and flavocytochrome b(558), and the activation can be triggered in a cell-free system with an anionic amphiphile. We find that the activated oxidase in a pure cell-free system was rapidly inactivated upon dilution. When the activated oxidase was treated with a chemical cross-linker, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, the half-life of the oxidase in dilution was extended from 1min to 4h at 25 degrees C. The cross-linked oxidase was resistant to inhibition by inactive flavin analogs, indicating that cross-linking prevents flavin exchange. When a fusion protein p67N-p47N plus RacQ61L was added, flavocytochrome b(558) became spontaneously active. Cross-linking of this mixture produced an oxidase that was extremely stable to dilution (t(1/2)=6.6h). Western blotting analysis showed the presence of a cross-link between p67N-p47N and RacQ61L. These results suggest that covalently linked phox components prevents FAD loss and stabilizes the longevity of the stoichiometric complex, extending the lifespan of the active oxidase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号