首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   369篇
  免费   44篇
  2022年   4篇
  2021年   11篇
  2020年   4篇
  2019年   3篇
  2018年   6篇
  2017年   3篇
  2016年   8篇
  2015年   13篇
  2014年   17篇
  2013年   13篇
  2012年   24篇
  2011年   18篇
  2010年   12篇
  2009年   18篇
  2008年   18篇
  2007年   21篇
  2006年   11篇
  2005年   17篇
  2004年   11篇
  2003年   13篇
  2002年   10篇
  2001年   8篇
  2000年   18篇
  1999年   8篇
  1998年   7篇
  1997年   2篇
  1996年   3篇
  1995年   6篇
  1994年   7篇
  1993年   2篇
  1992年   5篇
  1991年   10篇
  1990年   10篇
  1989年   9篇
  1987年   4篇
  1986年   5篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1977年   5篇
  1976年   4篇
  1975年   6篇
  1973年   7篇
  1972年   2篇
  1969年   2篇
  1959年   2篇
  1940年   2篇
排序方式: 共有413条查询结果,搜索用时 15 毫秒
21.
22.
Transmembrane structure of an inwardly rectifying potassium channel   总被引:12,自引:0,他引:12  
Minor DL  Masseling SJ  Jan YN  Jan LY 《Cell》1999,96(6):879-891
Inwardly rectifying potassium channels (K(ir)), comprising four subunits each with two transmembrane domains, M1 and M2, regulate many important physiological processes. We employed a yeast genetic screen to identify functional channels from libraries of K(ir) 2.1 containing mutagenized M1 or M2 domains. Patterns in the allowed sequences indicate that M1 and M2 are helices. Protein-lipid and protein-water interaction surfaces identified by the patterns were verified by sequence minimization experiments. Second-site suppressor analyses of helix packing indicate that the M2 pore-lining inner helices are surrounded by the M1 lipid-facing outer helices, arranged such that the M1 helices participate in subunit-subunit interactions. This arrangement is distinctly different from the structure of a bacterial potassium channel with the same topology and identifies helix-packing residues as hallmark sequences common to all K(ir) superfamily members.  相似文献   
23.
Structural genomics (SG) initiatives are currently attempting to achieve the high-throughput determination of protein structures on a genome-wide scale. Here we analyze the SG target data that have been publicly released over a period of 16 months to assess the potential of the SG initiatives. We use statistical techniques most commonly applied in epidemiology to describe the dynamics of targets through the experimental SG pipeline. There is no clear bottleneck among the key stages of cloning, expression, purification and crystallization. An SG target will progress through each of these steps with a probability of approximately 45%. Around 80% of targets with diffraction data will yield a crystal structure, and 20% of targets with HSQC spectra will yield an NMR structure. We also find the overlaps among SG targets: 61% of SG protein sequences share at least 30% sequence identity with one or more other SG targets. There is no significant difference in average structure quality among SG structures and other structures in the PDB determined by "traditional" methods, but on average SG structures are deposited to the PDB twice as quickly after X-ray data collection.  相似文献   
24.
We have constructed a DNA microarray to monitor expression of predicted genes in Drosophila. By using homotypic hybridizations, we show that the array performs reproducibly, that dye effects are minimal, and that array results agree with systematic northern blotting. The array gene list has been extensively annotated and linked-out to other databases. Incyte and the NIH have made the platform available to the community via academic microarray facilities selected by an NIH committee.  相似文献   
25.
26.
The shape of sea urchins may be determined mechanically by patterns of force analogous to those that determine the shape of a water droplet. This mechanical analogy implies skeletal flexibility at the time of growth. Although comprised of many rigid calcite plates, sutural collagenous ligaments could confer such flexibility if the sutures between plates loosened and acted as joints at the time of growth. We present experimental evidence of such flexibility associated with weight gain and growth. Over 13-, 4-, and 2-week periods, fed urchins (Strongylocentrotus droebachiensis) gained weight and developed looser sutures than unfed urchins that maintained or lost weight. Further, skeletons of fed urchins force-relaxed more than did those of unfed urchins and urchins with loose sutures force-relaxed more than those with tight sutures. Urchins (Strongylocentrotus franciscanus) fed for two and a half weeks, gained weight, also had looser skeletons and deposited calcite at sutural margins, whereas unfed ones did not. In field populations of S. droebachiensis the percentage having loose sutures varied with urchin diameter and reflected their size-specific growth rate. The association between feeding, weight gain, calcite deposition, force relaxation and sutural looseness supports the hypothesis that urchins deform flexibly while growing, thus determining their drop-like shapes.  相似文献   
27.
28.
The role of Ser 167 of Escherichia coli thymidylate synthase (TS) in catalysis has been characterized by kinetic and crystallographic studies. Position 167 variants including S167A, S167N, S167D, S167C, S167G, S167L, S167T, and S167V were generated by site-directed mutagenesis. Only S167A, S167G, S167T, and S167C complemented the growth of thymidine auxotrophs of E. coli in medium lacking thymidine. Steady-state kinetic analysis revealed that mutant enzymes exhibited k(cat) values 1.1-95-fold lower than that of the wild-type enzyme. Relative to wild-type TS, K(m) values of the mutant enzymes for 2'-deoxyuridylate (dUMP) were 5-90 times higher, while K(m) values for 5,10-methylenetetrahydrofolate (CH(2)H(4)folate) were 1.5-16-fold higher. The rate of dehalogenation of 5-bromo-2'-deoxyuridine 5'-monophosphate (BrdUMP), a reaction catalyzed by TS that does not require CH(2)H(4)folate as cosubstrate, by mutant TSs was analyzed and showed that only S167A and S167G catalyzed the dehalogenation reaction and values of k(cat)/K(m) for the mutant enzymes were decreased by 10- and 3000-fold, respectively. Analysis of pre-steady-state kinetics of ternary complex formation revealed that the productive binding of CH(2)H(4)folate is weaker to mutant TSs than to the wild-type enzyme. Chemical transformation constants (k(chem)) for the mutant enzymes were lower by 1.1-6.0-fold relative to the wild-type enzyme. S167A, S167T, and S167C crystallized in the I2(1)3 space group and scattered X-rays to either 1.7 A (S167A and S167T) or 2.6 A (S167C). The high-resolution data sets were refined to a R(crys) of 19.9%. In the crystals some cysteine residues were derivatized with 2-mercaptoethanol to form S,S-(2-hydroxyethyl)thiocysteine. The pattern of derivatization indicates that in the absence of bound substrate the catalytic cysteine is not more reactive than other cysteines. It is proposed that the catalytic cysteine is activated by substrate binding by a proton-transfer mechanism in which the phosphate group of the nucleotide neutralizes the charge of Arg 126', facilitating the transfer of a proton from the catalytic cysteine to a His 207-Asp 205 diad via a system of ordered water molecules.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号