首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   15篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   9篇
  2020年   6篇
  2019年   2篇
  2018年   6篇
  2017年   5篇
  2016年   8篇
  2015年   10篇
  2014年   15篇
  2013年   19篇
  2012年   24篇
  2011年   13篇
  2010年   7篇
  2009年   15篇
  2008年   14篇
  2007年   26篇
  2006年   22篇
  2005年   15篇
  2004年   13篇
  2003年   12篇
  2002年   6篇
  2001年   1篇
  1999年   2篇
  1995年   1篇
  1991年   1篇
  1983年   1篇
排序方式: 共有255条查询结果,搜索用时 31 毫秒
71.
72.

Objective

We aimed to mine the data in the Electronic Medical Record to automatically discover patients'' Rheumatoid Arthritis disease activity at discrete rheumatology clinic visits. We cast the problem as a document classification task where the feature space includes concepts from the clinical narrative and lab values as stored in the Electronic Medical Record.

Materials and Methods

The Training Set consisted of 2792 clinical notes and associated lab values. Test Set 1 included 1749 clinical notes and associated lab values. Test Set 2 included 344 clinical notes for which there were no associated lab values. The Apache clinical Text Analysis and Knowledge Extraction System was used to analyze the text and transform it into informative features to be combined with relevant lab values.

Results

Experiments over a range of machine learning algorithms and features were conducted. The best performing combination was linear kernel Support Vector Machines with Unified Medical Language System Concept Unique Identifier features with feature selection and lab values. The Area Under the Receiver Operating Characteristic Curve (AUC) is 0.831 (σ = 0.0317), statistically significant as compared to two baselines (AUC = 0.758, σ = 0.0291). Algorithms demonstrated superior performance on cases clinically defined as extreme categories of disease activity (Remission and High) compared to those defined as intermediate categories (Moderate and Low) and included laboratory data on inflammatory markers.

Conclusion

Automatic Rheumatoid Arthritis disease activity discovery from Electronic Medical Record data is a learnable task approximating human performance. As a result, this approach might have several research applications, such as the identification of patients for genome-wide pharmacogenetic studies that require large sample sizes with precise definitions of disease activity and response to therapies.  相似文献   
73.
The reaction of [ZnLI,II2] (LI = [NH2C(S)NP(O)(OiPr)2]; LII = [PhNHC(S)NP(O)(OiPr)2]) or [Cd2LIV4] (LIV = [PhC(S)NP(O)(OiPr)2]) with 2,2′-bipyridine (bpy) or 1,10-phenanthroline (phen) leads to the heteroligand complexes [Zn(bpy)LI,II2], [Zn(phen)LI,II2], [Cd(bpy)LIV2] or [Cd(phen)LIV2], respectively. The introduction of the diimine ligands into the coordination sphere of the metal cation provokes a change from 1,5-O,S- to 1,3-N,S-coordination of the anionic ligands for Zn but not for the Cd species. The reaction of [Zn(phen)LIV2] (LIV = PhC(S)NP(O)(OiPr)2) with CH2Cl2 cleaves the chlorine atoms from CH2Cl2 and leads to the formation of [Zn(phen)LIVCl] and S,S′-bis(benzimidothio-N-diisopropoxyphosphoryl)methane (LIV-CH2-LIV) in high yields. Using CHCl3 or CCl4 instead of CH2Cl2 does not lead to the formation of chlorine substituted products even under reflux conditions. The new compounds were investigated by 1H and 31P{1H} NMR, IR spectroscopy and microanalysis. Crystal structures of [ZnLII2], [Cd(phen)LIV2]·CH2Cl2, [Zn(bpy)LI2] and [Zn(phen)LIVCl] were elucidated by X-ray diffraction.  相似文献   
74.
Antimicrobial treatment strategies must improve to reduce the high mortality rates in septic patients. In noninfectious models of acute inflammation, activation of A2B adenosine receptors (A2BR) in extracellular adenosine-rich microenvironments causes immunosuppression. We examined A2BR in antibacterial responses in the cecal ligation and puncture (CLP) model of sepsis. Antagonism of A2BR significantly increased survival, enhanced bacterial phagocytosis, and decreased IL-6 and MIP-2 (a CXC chemokine) levels after CLP in outbred (ICR/CD-1) mice. During the CLP-induced septic response in A2BR knockout mice, hemodynamic parameters were improved compared with wild-type mice in addition to better survival and decreased plasma IL-6 levels. A2BR deficiency resulted in a dramatic 4-log reduction in peritoneal bacteria. The mechanism of these improvements was due to enhanced macrophage phagocytic activity without augmenting neutrophil phagocytosis of bacteria. Following ex vivo LPS stimulation, septic macrophages from A2BR knockout mice had increased IL-6 and TNF-α secretion compared with wild-type mice. A therapeutic intervention with A2BR blockade was studied by using a plasma biomarker to direct therapy to those mice predicted to die. Pharmacological blockade of A2BR even 32 h after the onset of sepsis increased survival by 65% in those mice predicted to die. Thus, even the late treatment with an A2BR antagonist significantly improved survival of mice (ICR/CD-1) that were otherwise determined to die according to plasma IL-6 levels. Our findings of enhanced bacterial clearance and host survival suggest that antagonism of A2BRs offers a therapeutic target to improve macrophage function in a late treatment protocol that improves sepsis survival.  相似文献   
75.
Newcastle disease virus (NDV) is a negative-sense RNA virus that has been shown to possess oncolytic activity. NDV's selective replication in tumor cells has been previously suggested to be due to the lack of a proper antiviral response in these cells. Here we demonstrate that NDV possesses oncolytic activity in tumor cells capable of a robust type I interferon (IFN) response, suggesting that another mechanism underlies NDV's tumor specificity. We show that the oncolytic selectivity of NDV for tumor cells is dependent upon tumor cell resistance to apoptosis. Utilizing the human non-small-cell lung cancer cell line A549 overexpressing the antiapoptotic protein Bcl-xL, we show significant enhancement of oncolytic activity and NDV replication. Interestingly, while the Bcl-xL-overexpressing cells were resistant to apoptotic stimuli induced by chemotherapeutic agents and early viral replication, during the subsequent viral cycles, we observed a paradoxical increase in apoptosis in response to NDV. The increased oncolytic activity seen was secondary to enhanced viral replication and syncytium formation. The induction of a type I IFN response was enhanced in Bcl-xL cells. Overall, these findings propose a new mechanism for cancer cell specificity for NDV, making it an attractive anticancer agent for chemoresistant tumors with enhanced antiapoptotic activity.  相似文献   
76.
The genetic elimination of A2A adenosine receptors (A2AR) was shown to disengage the critical immunosuppressive mechanism and cause the dramatic exacerbation of acute inflammatory tissue damage by T cells and myeloid cells. This prompted the evaluation of the proinflammatory vs the anti-inflammatory effects of the widely consumed behavioral drug caffeine, as the psychoactive effects of caffeine are mediated largely by its antagonistic action on A2AR in the brain. Because caffeine has other biochemical targets besides A2AR, it was important to test whether the consumption of caffeine during an acute inflammation episode would lead to the exacerbation of immune-mediated tissue damage. We examined acute and chronic treatment with caffeine for its effects on acute liver inflammation. It is shown that caffeine at lower doses (10 and 20 mg/kg) strongly exacerbated acute liver damage and increased levels of proinflammatory cytokines. Because caffeine did not enhance liver damage in A2AR-deficient mice, we suggest that the potentiation of liver inflammation was mediated by interference with the A2AR-mediated tissue-protecting mechanism. In contrast, a high dose of caffeine (100 mg/kg) completely blocked both liver damage and proinflammatory cytokine responses through an A2AR-independent mechanism. Furthermore, caffeine administration exacerbated liver damage even when mice consumed caffeine chronically, although the extent of exacerbation was less than in "naive" mice that did not consume caffeine before. This study suggests an unappreciated "man-made" immunological pathogenesis whereby consumption of the food-, beverage-, and medication-derived adenosine receptor antagonists may modify an individual's inflammatory status and lead to excessive organ damage during acute inflammation.  相似文献   
77.
Correlated neuronal activity is instrumental in the formation of networks, but its emergence during maturation is poorly understood. We have used multibeam two-photon calcium microscopy combined with targeted electrophysiological recordings in order to determine the development of population coherence from embryonic to postnatal stages in the hippocampus. At embryonic stages (E16-E19), synchronized activity is absent, and neurons are intrinsically active and generate L-type channel-mediated calcium spikes. At birth, small cell assemblies coupled by gap junctions spontaneously generate synchronous nonsynaptic calcium plateaus associated to recurrent burst discharges. The emergence of coherent calcium plateaus at birth is controlled by oxytocin, a maternal hormone initiating labour, and progressively shut down a few days later by the synapse-driven giant depolarizing potentials (GDPs) that synchronize the entire network. Therefore, in the developing hippocampus, delivery is an important signal that triggers the first coherent activity pattern, which is silenced by the emergence of synaptic transmission.  相似文献   
78.
In oxygenic photosynthesis, light energy is stored in the form of chemical energy by converting CO2 and water into carbohydrates. The light-driven oxidation of water that provides the electrons and protons for the subsequent CO2 fixation takes place in photosystem II (PSII). Recent studies show that in higher plants, HCO3 increases PSII activity by acting as a mobile acceptor of the protons produced by PSII. In the green alga Chlamydomonas reinhardtii, a luminal carbonic anhydrase, CrCAH3, was suggested to improve proton removal from PSII, possibly by rapid reformation of HCO3 from CO2. In this study, we investigated the interplay between PSII and CrCAH3 by membrane inlet mass spectrometry and x-ray crystallography. Membrane inlet mass spectrometry measurements showed that CrCAH3 was most active at the slightly acidic pH values prevalent in the thylakoid lumen under illumination. Two crystal structures of CrCAH3 in complex with either acetazolamide or phosphate ions were determined at 2.6- and 2.7-Å resolution, respectively. CrCAH3 is a dimer at pH 4.1 that is stabilized by swapping of the N-terminal arms, a feature not previously observed in α-type carbonic anhydrases. The structure contains a disulfide bond, and redox titration of CrCAH3 function with dithiothreitol suggested a possible redox regulation of the enzyme. The stimulating effect of CrCAH3 and CO2/HCO3 on PSII activity was demonstrated by comparing the flash-induced oxygen evolution pattern of wild-type and CrCAH3-less PSII preparations. We showed that CrCAH3 has unique structural features that allow this enzyme to maximize PSII activity at low pH and CO2 concentration.Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes, which catalyze the interconversion of carbon dioxide (CO2) and bicarbonate (HCO3), a reaction that otherwise proceeds slowly at physiological pH. CAs belong to three evolutionary distinct classes, α, β, and γ, which share no significant amino acid sequence identity and are thought to be the result of convergent evolution (Hewett-Emmett and Tashian, 1996; Supuran, 2008; Ferry, 2010; Rowlett, 2010). Animals have only the α-CA type, but as multiple isoforms. By contrast, higher plants, algae, and cyanobacteria may contain members of all three CA families. In algae, CAs has been found in mitochondria and chloroplasts and in the cytoplasm and apoplasm.Many fresh-water and soil-living microalgae face limiting concentrations of inorganic carbon (Ci) in their environments. To overcome this, the green microalga Chlamydomonas reinhardtii, as well as most other unicellular algae and cyanobacteria, actively accumulate Ci inside the cells. This mechanism is known as the carbon-concentrating mechanism (CCM; Raven, 1997; Wang et al., 2011; Meyer and Griffiths, 2013). CCM allows the algae to maintain a high concentration of CO2 around the carboxylating enzyme, Rubisco, even under limiting external Ci. The increased concentration of CO2 in the chloroplast increases the CO2/O2 specificity for Rubisco that leads to a decreased oxygenation reaction, and hence carboxylation becomes more efficient.CCM can be induced in C. reinhardtii cultures by bubbling air containing CO2 at ambient or concentrations (≤0.04%; Vance and Spalding, 2005). Full metabolic adaptation is usually reached within 10 to 12 h after transfer to air CO2 conditions (Renberg et al., 2010). Already within the first few hours after induction, several genes are either up- or down-regulated (Miura et al., 2004; Yamano et al., 2008; Fang et al., 2012). Surprisingly, the global changes in protein expression do not correspond to those in the gene expression; only few proteins are either up- or down-regulated during CCM induction (Manuel and Moroney, 1988; Spalding and Jeffrey, 1989). CAs are important components of the CCM. In C. reinhardtii, 12 genes are expressed that encode for CA isoforms (Moroney et al., 2011). Among the many genes that are significantly up-regulated during CCM induction, there is one encoding for an apoplastic CA (CrCAH1) and two encoding for mitochondrial CAs (CrCAH4 and CrCAH5; Fujiwara et al., 1990; Eriksson et al., 1996).An α-type CA (CrCAH3) located in the thylakoid lumen in C. reinhardtii has also been identified as important at low CO2 levels (Karlsson et al., 1998). The sequence indicates that it is transported through the thylakoid membrane via the Twin Arg Translocation pathway (Albiniak et al., 2012). A mutant not expressing CrCAH3 (knockout of the cah3 gene) shows no or poor growth under air CO2 levels (Spalding et al., 1983; Moroney et al., 1986) and has a severely impaired photosynthetic capacity under low Ci conditions. This mutant, called CrCIA3, has been a valuable tool for resolving the CrCAH3 function.It is also established that CrCAH3 is associated with PSII (Stemler, 1997; Villarejo et al., 2002; Blanco-Rivero et al., 2012). Using isolated PSII membranes from C. reinhardtii, Shutova et al. (2008) presented data suggesting that CrCAH3 is important for efficient water oxidation by facilitating the removal of protons that are produced when water is oxidized by PSII. This is in line with recent studies (Zaharieva et al., 2011; Klauss et al., 2012) showing that it is crucial to have alternating electron and proton removals from the oxygen-evolving complex (OEC) during the five-state catalytic cycle, i.e. the Kok cycle (Kok et al., 1970), of photosynthetic water oxidation. If proton removal is slow, this leads to less efficient O2 production and consequently may lead to donor side photoinhibition (Minagawa et al., 1996). That HCO3 acts as a mobile proton carrier has been recently demonstrated for spinach (Spinacia oleracea) PSII membrane fragments using membrane inlet mass spectrometry (MIMS; Koroidov et al., 2014). These results show that PSII possesses a light- and HCO3-dependent CO2 production for up to 50% of the O2 produced.Taken together, these data suggest that CrCAH3 plays an important role in regulating PSII reactions. In this work, we present further evidence for its function in PSII primary reactions, in particular at low Ci concentrations. We determined crystal structures of CrCAH3 at 2.6 to 2.7 Å resolution in complex with acetazolamide (AZM) or phosphate ions. Our results support a zinc-hydroxide catalytic mechanism of CrCAH3 similar to that of other α-CAs. CrCAH3 has, however, an activity optimum at lower pH values than CAs of the same type, which normally operate at pH 7.0 and higher (Demir et al., 2000). The activity optimum of CrCAH3 makes it more suitable for CO2/HCO3 interconversion at the pH levels present in the thylakoid lumen under light exposure.  相似文献   
79.
The innate immune system differentially recognizes Candida albicans yeast and hyphae. It is not clear how the innate immune system effectively discriminates between yeast and hyphal forms of C. albicans. Glucans are major components of the fungal cell wall and key fungal pathogen-associated molecular patterns. C. albicans yeast glucan has been characterized; however, little is known about glucan structure in C. albicans hyphae. Using an extraction procedure that minimizes degradation of the native structure, we extracted glucans from C. albicans hyphal cell walls. 1H NMR data analysis revealed that, when compared with reference (1→3,1→6) β-linked glucans and C. albicans yeast glucan, hyphal glucan has a unique cyclical or “closed chain” structure that is not found in yeast glucan. GC/MS analyses showed a high abundance of 3- and 6-linked glucose units when compared with yeast β-glucan. In addition to the expected (1→3), (1→6), and 3,6 linkages, we also identified a 2,3 linkage that has not been reported previously in C. albicans. Hyphal glucan induced robust immune responses in human peripheral blood mononuclear cells and macrophages via a Dectin-1-dependent mechanism. In contrast, C. albicans yeast glucan was a much less potent stimulus. We also demonstrated the capacity of C. albicans hyphal glucan, but not yeast glucan, to induce IL-1β processing and secretion. This finding provides important evidence for understanding the immune discrimination between colonization and invasion at the mucosal level. When taken together, these data provide a structural basis for differential innate immune recognition of C. albicans yeast versus hyphae.  相似文献   
80.
We have recently reported the discovery of numerous new compounds that are selective inhibitors of all of the subtypes of the adenosine receptor family via a pharmacophore database searching and screening strategy. During the course of this work we made the unexpected discovery of a potent A(2B) receptor antagonist, 4-methyl-7-methoxyquinazolyl-2-(2'-amino-4'-imidazolinone) (38, CMB 6446), which showed selectivity for this receptor and functioned as an antagonist, with a binding K(i) value of 112 nM. We explored the effects of both substituent- and ring-structural variations on the receptor affinity in this series of derivatives, which were found to be mostly non-selective adenosine receptor ligands with K(i) values in the micromolar range. Since no enhancement of A(2B) receptor affinity of 38 was achieved, the previously reported pharmacophore-based searching strategy yielded the most potent and selective structurally-related hit in the database originally searched.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号