首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   5篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2013年   43篇
  2012年   3篇
  2011年   6篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   5篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  1994年   1篇
  1992年   1篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1979年   2篇
  1976年   2篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
61.
62.
Toll-like receptors (TLRs) play an important role as a sensor of microbial pathogens in the innate immune response. TLRs transmit signals through the recruitment of adaptor proteins including tumor necrosis factor-associated factor 6 (TRAF6), which mediates the activation of IkappaB kinase (IKK). TIFA (TRAF-interacting protein with a forkhead-associated (FHA) domain) has been shown to bind to TRAF6 and activate IKK by promoting the oligomerization and ubiquitin-ligase activity of TRAF6. FHA domains preferentially bind to phospho-threonine residues in their targets. Here, we identified a novel zinc finger protein, ZCCHC11, that interacts with TIFA from phosphoproteins of a macrophage cell line, RAW 264.7, by using affinity purification with GST-TIFA and mass spectrometric analysis. By a search of the EST database, we found a 200kDa full-length form (ZCCHC11L). ZCCHC11L was mostly located to the nucleus, but translocated into the cytoplasm in response to LPS and bound to TIFA. Overexpression and knockdown by siRNA indicated that ZCCHC11 functions as a negative regulator of TLR-mediated NF-kappaB activation. The N-terminal region (ZCCHC11S) including C2H2-type [corrected] Zn-finger motif was sufficient for suppression of NF-kappaB. We propose that ZCCHC11 is a unique TLR signal regulator, which interacts with TIFA after LPS treatment and suppresses the TRAF6-dependent activation of NF-kappaB.  相似文献   
63.
TAK1, a member of the MAP3K family, plays an essential role in activation of JNK/p38 MAPKs and IKK in the IL-1β and TNFα signaling pathway. Upon stimulation, TAK1 is rapidly and transiently activated. While the activation mechanism of TAK1 in these signaling pathways is well characterized, how its activity is terminated still remains unclear. To identify the molecule(s) involved in TAK1 regulation, we performed tandem affinity purification (TAP) in HeLa cells stably expressing TAP-tagged TAK1. FBXW5, an F-box family protein, was identified as a previously unknown component of the IL-1β-induced TAK1 complex. FBXW5 associated with endogenous TAK1 in an IL-1β-dependent manner. Overexpression of FBXW5 inhibited IL-1β-induced activation of JNK/p38 MAPKs and NF-κB as well as phosphorylation of TAK1 on Thr187. Conversely, knockdown of FBXW5 resulted in the prolonged activation of TAK1 upon IL-1β stimulation. These results suggest that FBXW5 negatively regulates TAK1 in the IL-1β signaling pathway.  相似文献   
64.
The physiological role of sulfoquinovosyl diacylglycerol (SQDG) in photosynthesis was investigated with a SQDG defective mutant (hf-2) of Chlamydomonas reinhardtii that did not have any detectable amount of SQDG. The mutant showed a lower rate of photosystem II (PSII) activity by approximately 40% and also a lower growth rate than those of the wild-type. Results of genetical analysis of hf-2 strongly suggest that the SQDG defect and the lowered PSII activity are due to a single gene mutation. The supplementation of SQDG to hf-2 cells restored the lowered PSII activity to the same level as that of wild-type cells, and also enabled the mutant to grow even in the presence of 135 nm 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Moreover, the incubation of isolated thylakoid membranes of hf-2 with SQDG raised the lowered PSII activity. Chemical modifications of SQDG impaired the recovery of PSII activity. The results suggest that SQDG is indispensable for PSII activity in Chlamydomonas by maintaining PSII complexes in their proper state.  相似文献   
65.
The small GTPase Rab5 plays a key role in early endocytic pathway, and its activation requires guanine-nucleotide exchange factors (GEFs). Rab5-GEFs share a conserved VPS9 domain for the GEF action, and RIN3 containing additional domains, such as Src-homology 2, RIN-family homology (RH), and Ras-association (RA), was identified as a new Rab5-GEF. However, precise functions of the additional domains and the activation mechanism of RIN3 remain unknown. Here, we found tyrosine-phosphorylation signals are involved in the Rab5-GEF activation. Treatment of HeLa cells with pervanadate translocates RIN3 from cytoplasm to the Rab5-positive vesicles. This RIN3 translocation was applied to various mutants lacking each domain of RIN3. Our present results suggest that a Ras GTPase(s) activated by tyrosine-phosphorylation signals interacts with the inhibitory RA domain, resulting in an active conformation of RIN3 as a Rab5-GEF and that RIN-unique RH domain constitutes a Rab5-binding region for the progress of GEF action.  相似文献   
66.
67.
Generation of high-affinity Ab is impaired in mice lacking germinal center-associated DNA primase (GANP) in B cells. In this study, we examined the effect of its overexpression in ganp transgenic C57BL/6 mice (Ganp(Tg)). Ganp(Tg) displayed normal phenotype in B cell development, serum Ig levels, and responses against T cell-independent Ag; however, it generated the Ab with much higher affinity against nitrophenyl-chicken gammaglobulin in comparison with C57BL/6. To further examine the affinity increase, we established hybridomas producing high-affinity mAbs and compared their affinities using BIAcore. C57BL/6 generated high-affinity anti-nitrophenyl mAbs (K(D) approximately 2.50 x 10(-7) M) of IgG1/lambda1 and contained the V(H)186.2 region with W33L mutation. Ganp(Tg) generated much higher affinity (K(D) > 1.57 x 10(-9) M) by usage of V(H)186.2 as well as noncanonical V(H)7183 regions. Ganp(Tg) also generated exceptionally high-affinity anti-HIV-1 (V3 peptide) mAbs (K(D) > 9.90 x 10(-11) M) with neutralizing activity. These results demonstrated that GANP is involved in V region alteration generating high-affinity Ab.  相似文献   
68.
69.
Previously, a thermophilic obligate methane-oxidizing bacterium, H-2 (type I), was isolated in our laboratory. H-2 is a new type of methylotroph because of the G+C content of DNA; it uses both the ribulose monophosphate pathway and the serine pathway for carbon assimilation and possesses a new quinone. In addition, we found that resting cell suspensions of H-2 had the ability to oxidize a variety of compounds different from the other methane-oxidizing bacteria as follows. (i) C1 to C8n-alkanes are hydroxylated and further oxidized, yielding mixtures of the corresponding alcohols, aldehydes, acids, and ketones. Liquid alkanes are transformed through a different oxidative pathway from that of gaseous ones. (ii) Both gaseous (C2 to C4) and liquid (C5, C6) n-alkenes are oxidized to their corresponding 1,2-epoxides. (iii) Liquid monochloro and dichloro n-alkanes (C5, C6) are oxidized, yielding their corresponding acids or haloacids. (iv) Diethyl ether is oxidized to acetic acid; no ethanol and acetaldehyde are detected. (v) Cyclic and aromatic compounds are also oxidized. (vi) Secondary alcohols (C3 to C10) are oxidized to their corresponding methyl ketones.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号