首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   12篇
  143篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2012年   5篇
  2011年   8篇
  2010年   5篇
  2009年   3篇
  2008年   6篇
  2007年   13篇
  2006年   6篇
  2005年   5篇
  2004年   3篇
  2003年   7篇
  2002年   3篇
  2001年   7篇
  2000年   9篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1985年   1篇
  1984年   2篇
  1980年   1篇
  1979年   1篇
  1976年   2篇
  1974年   1篇
  1972年   2篇
  1970年   1篇
排序方式: 共有143条查询结果,搜索用时 15 毫秒
91.
The RHO1 gene encodes a homolog of mammalian RhoA small GTP binding protein in the yeast Saccharomyces cerevisiae. Rho1p is localized at the growth sites, including the bud tip and the cytokinesis site, and is required for bud formation. We have recently shown that Pkc1p, a yeast homolog of mammalian protein kinase C, and glucan synthase are targets of Rho1p. Using the two-hybrid screening system, we cloned a gene encoding a protein which interacted with the GTP-bound form of Rho1p. This gene was identified as BNI1, known to be implicated in cytokinesis or establishment of cell polarity in S.cerevisiae. Bni1p shares homologous domains (FH1 and FH2 domains) with proteins involved in cytokinesis or establishment of cell polarity, including formin of mouse, capu and dia of Drosophila and FigA of Aspergillus. A temperature-sensitive mutation in which the RHO1 gene was replaced by the mammalian RhoA gene showed a synthetically lethal interaction with the bni1 mutation and the RhoA bni1 mutant accumulated cells with a deficiency in cytokinesis. Furthermore, this synthetic lethality was caused by the incapability of RhoA to activate Pkc1p, but not glucan synthase. These results suggest that Rho1p regulates cytoskeletal reorganization at least through Bni1p and Pkc1p.  相似文献   
92.
93.
Itoh S  Mino H  Itoh K  Shigenaga T  Uzumaki T  Iwaki M 《Biochemistry》2007,46(43):12473-12481
Reaction center chlorophylls (Chls) in photosystems II and I were studied in the isolated thylakoid membranes of a cyanobacterium, Acaryochloris marina, which contains Chls d and a as the major and minor pigments, respectively. The membranes contained PS I and II complexes at a 1.8:1 molar ratio on the basis of the spin densities on the tyrosine D radical and the photo-oxidized PS I primary donor (P740+). In the presence of ferricyanide, laser excitation induced bleach at 725 nm that recovered with time constants of 25 micros and 1.2 ms. The signal, designated P725, was suppressed by PS II inhibitors DCMU and hydroxylamine. The P725 spectrum was tentatively assigned to the absorption changes of the special pair Chl d, the accessory Chl d, and the acceptor pheophytin a in PS II. The addition of ascorbate induced the additional signal with a slow decay time constant of 4.5 ms. This signal showed a broad bleach at 740 nm and shift-type absorption changes at around 707 and 685 nm, which were assigned to the absorption changes of PS I special pair of Chl d (P740), the accessory Chl d, and the primary acceptor Chl a (A0), respectively. Mechanisms and the evolution of the Chl-d based reaction centers using far-red light are discussed together with the amino acid sequences of PS II D1 and D2 proteins.  相似文献   
94.
Protons in the vicinity of the oxygen-evolving manganese cluster in photosystem II were studied by proton matrix ENDOR. Six pairs of proton ENDOR signals were detected in both the S(0) and S(2) states of the Mn-cluster. Two pairs of signals that show hyperfine constants of 2.3/2.2 and 4.0 MHz, respectively, disappeared after D(2)O incubation in both states. The signals with 2.3/2.2 MHz hyperfine constants in S(0) and S(2) state multiline disappeared after 3 h of D(2)O incubation in the S(0) and S(1) states, respectively. The signal with 4.0 MHz hyperfine constants in S(0) state multiline disappeared after 3 h of D(2)O incubation in the S(0) state, while the similar signal in S(2) state multiline disappeared only after 24 h of D(2)O incubation in the S(1) state. The different proton exchange rates seem to be ascribable to the change in affinities of water molecules to the variation in oxidation state of the Mn cluster during the water oxidation cycle. Based on the point dipole approximation, the distances between the center of electronic spin of the Mn cluster and the exchangeable protons were estimated to be 3.3/3.2 and 2.7 A, respectively. These short distances suggest the protons belong to the water molecules ligated to the manganese cluster. We propose a model for the binding of water to the manganese cluster based on these results.  相似文献   
95.
T A Ono  H Mino 《Biochemistry》1999,38(27):8778-8785
Binding of Mn2+ to manganese-depleted photosystem II and electron donation from the bound Mn2+ to an oxidized YZ tyrosine were studied under the same equilibrium conditions. Mn2+ associated with the depleted membranes in a nonsaturating manner when added alone, but only one Mn2+ ion per photosystem II (PS II) was bound to the membranes in the presence of other divalent cations including Ca2+ and Mg2+. Mn2+-dependent electron donation to photosystem II studied by monitoring the decay kinetics of chlorophyll fluorescence and the electron paramagnetic resonance (EPR) signal of an oxidized YZ tyrosine (YZ+) after a single-turnover flash indicated that the binding of only one Mn2+ ion to the manganese-depleted PS II is sufficient for the complete reduction of YZ+ induced by flash excitation. The results indicate that the manganese-depleted membranes have only one unique binding site, which has higher affinity and higher specificity for Mn2+ compared with Mg2+ and Ca2+, and that Mn2+ bound to this unique site can deliver an electron to YZ+ with high efficiency. The dissociation constant for Mn2+ of this site largely depended on pH, suggesting that a single amino acid residue with a pKa value around neutral pH is implicated in the binding of Mn2+. The results are discussed in relation to the photoactivation mechanism that forms the active manganese cluster.  相似文献   
96.
The microbiology of biological phosphorus removal in activated sludge systems   总被引:39,自引:0,他引:39  
Activated sludge systems are designed and operated globally to remove phosphorus microbiologically, a process called enhanced biological phosphorus removal (EBPR). Yet little is still known about the ecology of EBPR processes, the microbes involved, their functions there and the possible reasons why they often perform unreliably. The application of rRNA-based methods to analyze EBPR community structure has changed dramatically our understanding of the microbial populations responsible for EBPR, but many substantial gaps in our knowledge of the population dynamics of EBPR and its underlying mechanisms remain. This review critically examines what we once thought we knew about the microbial ecology of EBPR, what we think we now know, and what still needs to be elucidated before these processes can be operated and controlled more reliably than is currently possible. It looks at the history of EBPR, the currently available biochemical models, the structure of the microbial communities found in EBPR systems, possible identities of the bacteria responsible, and the evidence why these systems might operate suboptimally. The review stresses the need to extend what have been predominantly laboratory-based studies to full-scale operating plants. It aims to encourage microbiologists and process engineers to collaborate more closely and to bring an interdisciplinary approach to bear on this complex ecosystem.  相似文献   
97.
Two phylogenetically distinct Vibrionaceae strains C4II189T and C4V358T isolated from reef seawater off Ishigaki Island, Japan, in 2014 were studied with advanced genome-based taxonomy approaches. All aspects of phylogenetic (16S rRNA phylogeny, MLSA), phenotypic and genetic (ANI, DDH, AAI, and the number of core genes) cohesions between the two identified species were high enough to propose them as members of a new genus within the family Vibrionaceae. Consequently, an eighth genus Thaumasiovibrio gen. nov. is proposed that contains two new species Thaumasiovibrio occultus sp. nov. strain C4II189T (=DSM 101554T = JCM 31629T) (type species) and Thaumasiovibrio subtropicus sp. nov. strain C4V358T (=DSM 101555T = JCM 31630T). Thaumasiovibrio species were phylogenetically distinct from the other Vibrionaceae species based on pyrH gene sequences. The combination of catalase negative, sensitivity to vibriostatic agent O/129, and green colony formation on TCBS for the phylogenetically affiliated strains was the diagnostic features for the current tentative identification of this genus.  相似文献   
98.
This is the first report of the detection of two new anti-influenza drugs, peramivir (PER) and laninamivir (LAN), in Japanese sewage effluent and river waters. Over about 1 year from October 2013 to July 2014, including the influenza prevalence season in January and February 2014, we monitored for five anti-influenza drugs—oseltamivir (OS), oseltamivir carboxylate (OC), zanamivir (ZAN), PER, and LAN—in river waters and in sewage effluent flowing into urban rivers of the Yodo River system in Japan. The dynamic profiles of these anti-influenza drugs were synchronized well with that of the numbers of influenza patients treated with the drugs. The highest levels in sewage effluents and river waters were, respectively, 82 and 41 ng/L (OS), 347 and 125 ng/L (OC), 110 and 35 ng/L (ZAN), 64 and 11 ng/L (PER), and 21 and 9 ng/L (LAN). However, application of ozone treatment before discharge from sewage treatment plants was effective in reducing the levels of these anti-influenza drugs in effluent. The effectiveness of the ozone treatment and the drug dependent difference in susceptibility against ozone were further evidenced by ozonation of a STP effluent in a batch reactor. These findings should help to promote further environmental risk assessment of the generation of drug-resistant influenza viruses in aquatic environments.  相似文献   
99.
There are two types of microbial populations described in the literature as being capable of anaerobic storage of acetic acid in activated-sludge processes: the polyphosphate-accumulating organisms (PAO) and the glycogen-accumulating non-polyphosphate organisms (GAO). Both groups use the conversion of glycogen to poly-hydroxyalkanoate to produce ATP and NADH; however, the first group can also produce ATP from polyphosphate (poly-P). No representative pure cultures are available from either group. The question arises: is the observed activity of GAO due to PAO that are depleted in poly-P?? In this study, using a laboratory sequencing batch reactor containing an enriched culture, the ability of the enriched PAO to utilize organic substrate (acetate) anaerobically was investigated under conditions of poly-P limitation and surplus glycogen content of the biomass. This study showed clearly that, under these conditions, almost no acetate was taken up. Furthermore, this strongly suggests that PAO can not use glycogen conversion to poly-hydroxyalkanoate as the sole energy source under anaerobic conditions, which seems to be the restricted to a separate group of GAO. On the basis of the results and literature data, an improved scheme for the anaerobic acetate accumulation is presented.  相似文献   
100.
Yamamoto, S. and Mino, Y. 1987. Effect of sugar level on phleinase induction in stem base of orchardgrass after defoliation.
The induction of phleinase (β-D-fructan fructohydrolase, EC 3.2.1.80) in stem base of orchardgrass ( Dactylis glomerata L. clone N-377) after defoliation was studied in relation to the concomitant changes in sugar and protein levels. Phleinase activity in the stubble increased accompanied by a decrease in sucrose and glucose levels. This activity also increased under shading conditions without cutting. The induction of phleinase in excised stem base was suppressed by exogenously supplied glucose, fructose or sucrose. The suppression increased with increasing concentrations of glucose and it was not overcome by cyclic adenosine 3',5'-monophosphate. Protein level in the stem base decreased after defoliation and the decrease was reversed by exogenous glucose. Some hypotheses concerning the induction mechanism of phleinase are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号