首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17861篇
  免费   1411篇
  国内免费   1576篇
  2024年   42篇
  2023年   226篇
  2022年   605篇
  2021年   1001篇
  2020年   657篇
  2019年   793篇
  2018年   758篇
  2017年   522篇
  2016年   746篇
  2015年   1114篇
  2014年   1331篇
  2013年   1385篇
  2012年   1662篇
  2011年   1470篇
  2010年   898篇
  2009年   817篇
  2008年   903篇
  2007年   800篇
  2006年   721篇
  2005年   671篇
  2004年   518篇
  2003年   473篇
  2002年   369篇
  2001年   297篇
  2000年   277篇
  1999年   272篇
  1998年   171篇
  1997年   158篇
  1996年   181篇
  1995年   136篇
  1994年   154篇
  1993年   98篇
  1992年   113篇
  1991年   109篇
  1990年   79篇
  1989年   72篇
  1988年   48篇
  1987年   55篇
  1986年   38篇
  1985年   28篇
  1984年   37篇
  1983年   18篇
  1982年   14篇
  1981年   9篇
  1979年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
231.
glmM编码的磷酸葡糖胺变位酶是肽聚糖合成前体的关键酶。为探究发菜glmM响应干旱胁迫的表达调控机制及明确其分子信息,本研究对干旱胁迫条件下发菜glmM在转录水平的差异表达进行了分析,并对glmM的表达水平、磷酸化修饰、乙酰化修饰和琥珀酰化修饰水平进行了检测,克隆了发菜glmM,进行了序列分析和原核表达。结果表明,干旱胁迫条件下,发菜glmM在转录水平上的表达量先增加后减少,glmM上调表达,glmM的磷酸化修饰水平逐渐增加,乙酰化修饰水平相对稳定,琥珀酰化修饰水平有明显变化。设计特异性引物克隆glmM基因,获得全长1416 bp发菜glmM基因,与肺衣(5183)glmM的核苷酸序列同源性为95%,氨基酸同源性为97%。将glmM在大肠杆菌中表达,获得一个51.45 kD的外源蛋白,MALDI-TOF-TOF/MS分析证明该蛋白为磷酸葡糖胺变位酶。研究结果为深入研究发菜glmM的分子信息、生物学功能及其响应干旱胁迫的分子机制提供帮助。  相似文献   
232.
Despite their important roles in host nutrition and metabolism, and potential to cause disease, our knowledge of the fungal community in the mammalian gut is quite limited. To date, diversity and composition of fungi in swine gut still remains unknown. Therefore, the first internal transcribed spacer of fungi in faecal samples from three breeds of pigs (10 pigs for each breed) was sequenced based on an Illumina HiSeq 2500 platform, and the relationship between the fungal community and the concentrations of main short-chain fatty acids (SCFAs) was also analysed. Results indicated that Chenghua (local, higher body fat rate), Yorkshire (foreign, higher lean meat and growth rate) and Tibetan (plateau, stronger disease resistance) pigs harboured distinct fungal community. The Basidiomycota and Ascomycota presented as the two predominant phyla, with Loreleia, Russula and Candida as the top three genera in all samples. Network analysis revealed a total of 35 correlations among different fungal genera, with 27 (77.14%) positive and 8 (22.86%) negative pairwise interactions. Canonical correspondence analysis suggested that fungi in the faeces of pigs were more correlated to the concentration of acetate and butyrate rather than propionate. Spearman’s correlation further showed that Tomentella was positively correlated to both acetate and butyrate, and Loreleia was positively correlated to propionate (P < 0.05), while Nephroma and Taiwanofungus were negatively correlated to acetate and propionate (P < 0.05). These findings expanded our knowledge on the intestinal fungi in pigs with different genotypes and phenotypes, indicating that fungi may play an indispensable role during the metabolism of host and the maintenance of intestinal health. The cross-feeding between fungi and other microorganisms may be crucial during the digestion of dietary carbohydrates and the associated physiological processes, which is worthy to be further studied.  相似文献   
233.
Human intestinal microbiota is important to host health and is associated with various diseases. It is a challenge to identify the functions and metabolic activity of microorganisms at the single-cell level in gut microbial community. In this study, we applied Raman microspectroscopy and deuterium isotope probing (Raman–DIP) to quantitatively measure the metabolic activities of intestinal bacteria from two individuals and analysed lipids and phenylalanine metabolic pathways of functional microorganisms in situ. After anaerobically incubating the human faeces with heavy water (D2O), D2O with specific substrates (glucose, tyrosine, tryptophan and oleic acid) and deuterated glucose, the C–D band in single-cell Raman spectra appeared in some bacteria in faeces, due to the Raman shift from the C–H band. Such Raman shift was used to indicate the general metabolic activity and the activities in response to the specific substrates. In the two individuals' intestinal microbiota, the structures of the microbial communities were different and the general metabolic activities were 76 ± 1.0% and 30 ± 2.0%. We found that glucose, but not tyrosine, tryptophan and oleic acid, significantly stimulated metabolic activity of the intestinal bacteria. We also demonstrated that the bacteria within microbiota preferably used glucose to synthesize fatty acids in faeces environment, whilst they used glucose to synthesize phenylalanine in laboratory growth environment (e.g. LB medium). Our work provides a useful approach for investigating the metabolic activity in situ and revealing different pathways of human intestinal microbiota at the single-cell level.  相似文献   
234.
Understanding the interplay between bacterial fitness, antibiotic resistance, host immunity and host metabolism could guide treatment and improve immunity against antibiotic-resistant pathogens. The acquisition of levofloxacin (Lev) resistance affects the fitness of Vibrio alginolyticus in vitro and in vivo. Lev-resistant (Lev-R) V. alginolyticus exhibits slow growth, reduced pathogenicity and greater resistance to killing by the host, Danio rerio (zebrafish), than Lev-sensitive (Lev-S) V. alginolyticus, suggesting that Lev-R V. alginolyticus triggers a weaker innate immune response in D. rerio than Lev-S V. alginolyticus. Differences were detected in the metabolome of D. rerio infected with Lev-S or Lev-R V. alginolyticus. Maltose, a crucial metabolite, is significantly downregulated in D. rerio infected with Lev-R V. alginolyticus, and exogenous maltose enhances the immune response of D. rerio to Lev-R V. alginolyticus, leading to better clearance of the infection. Furthermore, we demonstrate that exogenous maltose stimulates the host production of lysozyme and its binding to Lev-R V. alginolyticus, which depends on bacterial membrane potential. We suggest that exogenous exposure to crucial metabolites could be an effective strategy for treating and/or managing infections with antibiotic-resistant bacteria.  相似文献   
235.
236.
Plants quickly accumulate reactive oxygen species (ROS) to resist against pathogen invasion, while pathogens strive to escape host immune surveillance by degrading ROS. However, the nature of the strategies that fungal pathogens adopt to counteract host-derived oxidative stress is manifold and requires deep investigation. In this study, a superoxide dismutase (SOD) from Puccinia striiformis f. sp. tritici (Pst) PsSOD2 with a signal peptide (SP) and the glycophosphatidyl inositol (GPI) anchor, strongly induced during infection, was analysed for its biological characteristics and potential role in wheat–Pst interactions. The results showed that PsSOD2 encodes a Cu-only SOD and responded to ROS treatment. Heterologous complementation assays in Saccharomyces cerevisiae suggest that the SP of PsSOD2 is functional for its secretion. Transient expression in Nicotiana benthamiana leaves revealed that PsSOD2 is localized to the plasma membrane. In addition, knockdown of PsSOD2 by host-induced gene silencing reduced Pst virulence and resulted in restricted hyphal development and increased ROS accumulation. In contrast, heterologous transient assays of PsSOD2 suppressed flg22-elicited ROS production. Taken together, our data indicate that PsSOD2, as a virulence factor, was induced and localized to the plasma membrane where it may function to scavenge host-derived ROS for promoting fungal infection.  相似文献   
237.
A key challenge in ecology is to understand the relationships between organismal traits and ecosystem processes. Here, with a novel dataset of leaf length and width for 10 480 woody dicots in China and 2374 in North America, we show that the variation in community mean leaf size is highly correlated with the variation in climate and ecosystem primary productivity, independent of plant life form. These relationships likely reflect how natural selection modifies leaf size across varying climates in conjunction with how climate influences canopy total leaf area. We find that the leaf size?primary productivity functions based on the Chinese dataset can predict productivity in North America and vice‐versa. In addition to advancing understanding of the relationship between a climate‐driven trait and ecosystem functioning, our findings suggest that leaf size can also be a promising tool in palaeoecology for scaling from fossil leaves to palaeo‐primary productivity of woody ecosystems.  相似文献   
238.
The jasmonic acid (JA) pathway plays crucial roles in plant defence against pathogens and herbivores. Rice stripe virus (RSV) is the type member of the genus Tenuivirus. It is transmitted by the small brown planthopper (SBPH) and causes damaging epidemics in East Asia. The role(s) that JA may play in the tripartite interaction against RSV, its host, and vector are poorly understood. Here, we found that the JA pathway was induced by RSV infection and played a defence role against RSV. The coat protein (CP) was the major viral component responsible for inducing the JA pathway. Methyl jasmonate treatment attracted SBPHs to feed on rice plants while a JA-deficient mutant was less attractive than wild-type rice. SBPHs showed an obvious preference for feeding on transgenic rice lines expressing RSV CP. Our results demonstrate that CP is an inducer of the JA pathway that activates plant defence against RSV while also attracting SBPHs to feed and benefitting viral transmission. This is the first report of the function of JA in the tripartite interaction between RSV, its host, and its vector.  相似文献   
239.
Red‐spotted grouper nervous necrosis virus (RGNNV), the causative agent of viral nervous necrosis disease, has caused high mortality and heavy economic losses in marine aquaculture worldwide. However, changes in host cell metabolism during RGNNV infection remain largely unknown. Here, the global metabolic profiling during RGNNV infection and the roles of cellular fatty acid synthesis in RGNNV infection were investigated. As the infection progressed, 71 intracellular metabolites were significantly altered in RGNNV‐infected cells compared with mock‐infected cells. The levels of metabolites involved in amino acid biosynthesis and metabolism were significantly decreased, whereas those that correlated with fatty acid synthesis were significantly up‐regulated during RGNNV infection. Among them, tryptophan and oleic acid were assessed as the most crucial biomarkers for RGNNV infection. In addition, RGNNV infection induced the formation of lipid droplets and re‐localization of fatty acid synthase (FASN), indicating that RGNNV induced and required lipogenesis for viral infection. The exogenous addition of palmitic acid (PA) enhanced RGNNV infection, and the inhibition of FASN and acetyl‐CoA carboxylase (ACC) significantly decreased RGNNV replication. Additionally, not only inhibition of palmitoylation and phospholipid synthesis, but also destruction of fatty acid β‐oxidation significantly decreased viral replication. These data suggest that cellular fatty acid synthesis and mitochondrial β‐oxidation are essential for RGNNV to complete the viral life cycle. Thus, it has been demonstrated for the first time that RGNNV infection in vitro overtook host cell metabolism and, in that process, cellular fatty acid synthesis was an essential component for RGNNV replication.  相似文献   
240.
Begomoviruses of the Geminiviridae are usually transmitted by whiteflies and rarely by mechanical inoculation. We used tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus, to address this issue. Most ToLCNDV isolates are not mechanically transmissible to their natural hosts. The ToLCNDV-OM isolate, originally identified from a diseased oriental melon plant, is mechanically transmissible, while the ToLCNDV-CB isolate, from a diseased cucumber plant, is not. Genetic swapping and pathological tests were performed to identify the molecular determinants involved in mechanical transmission. Various viral infectious clones were constructed and successfully introduced into Nicotiana benthamiana, oriental melon, and cucumber plants by Agrobacterium-mediated inoculation. Mechanical transmissibility was assessed via direct rub inoculation with sap prepared from infected N. benthamiana. The presence or absence of viral DNA in plants was validated by PCR, Southern blotting, and in situ hybridization. The results reveal that mechanical transmissibility is associated with the movement protein (MP) of viral DNA-B in ToLCNDV-OM. However, the nuclear shuttle protein of DNA-B plays no role in mechanical transmission. Analyses of infectious clones carrying a single amino acid substitution reveal that the glutamate at amino acid position 19 of MP in ToLCNDV-OM is critical for mechanical transmissibility. The substitution of glutamate with glycine at this position in the MP of ToLCNDV-OM abolishes mechanical transmissibility. In contrast, the substitution of glycine with glutamate at the 19th amino acid position in the MP of ToLCNDV-CB enables mechanical transmission. This is the first time that a specific geminiviral movement protein has been identified as a determinant of mechanical transmissibility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号