首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   266篇
  免费   18篇
  284篇
  2024年   1篇
  2022年   4篇
  2021年   5篇
  2020年   3篇
  2018年   8篇
  2017年   8篇
  2016年   15篇
  2015年   21篇
  2014年   18篇
  2013年   18篇
  2012年   23篇
  2011年   31篇
  2010年   22篇
  2009年   18篇
  2008年   22篇
  2007年   14篇
  2006年   19篇
  2005年   3篇
  2004年   7篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   5篇
  1999年   5篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1991年   3篇
排序方式: 共有284条查询结果,搜索用时 15 毫秒
11.
The role of periplasmic disulfide oxidoreductase DsbA in Shiga toxin-producing Escherichia coli O157:H7 (STEC) was investigated. Deletion of dsbA (DeltadsbA) significantly decreased cell motility and alkaline phosphatase activity in STEC. STEC DeltadsbA also showed greater sensitivity to menadione and under low pH conditions. Significant reductions in surface attachment to both biotic (HT-29 epithelial cells) and abiotic (polystyrene and polyvinyl chloride) surfaces were observed in STEC DeltadsbA. In addition, no biofilm formation was detected in STEC DeltadsbA compared to wild-type cells in glass capillary tubes under continuous flow-culture system conditions. In the nematode model Caenorhabditis elegans-killing assay, the deletion of dsbA in STEC resulted in attenuated virulence compared to wild-type cells. STEC DeltadsbA was also found to have a reduced ability to colonize the nematode gut. These results suggest that DsbA plays important roles in biofilm formation and virulence in STEC cells.  相似文献   
12.
Yeom SJ  Kim YS  Lim YR  Jeong KW  Lee JY  Kim Y  Oh DK 《Biochimie》2011,93(10):1659-1667
Mannose-6-phosphate isomerase catalyzes the interconversion of mannose-6-phosphate and fructose-6-phosphate. The gene encoding a putative mannose-6-phosphate isomerase from Thermus thermophilus was cloned and expressed in Escherichia coli. The native enzyme was a 29 kDa monomer with activity maxima for mannose 6-phosphate at pH 7.0 and 80 °C in the presence of 0.5 mM Zn2+ that was present at one molecule per monomer. The half-lives of the enzyme at 65, 70, 75, 80, and 85 °C were 13, 6.5, 3.7, 1.8, and 0.2 h, respectively. The 15 putative active-site residues within 4.5 Å of the substrate mannose 6-phosphate in the homology model were individually replaced with other amino acids. The sequence alignments, activities, and kinetic analyses of the wild-type and mutant enzymes with amino acid changes at His50, Glu67, His122, and Glu132 as well as homology modeling suggested that these four residues are metal-binding residues and may be indirectly involved in catalysis. In the model, Arg11, Lys37, Gln48, Lys65 and Arg142 were located within 3 Å of the bound mannose 6-phosphate. Alanine substitutions of Gln48 as well as Arg142 resulted in increase of Km and dramatic decrease of kcat, and alanine substitutions of Arg11, Lys37, and Lys65 affected enzyme activity. These results suggest that these 5 residues are substrate-binding residues. Although Trp13 was located more than 3 Å from the substrate and may not interact directly with substrate or metal, the ring of Trp13 was essential for enzyme activity.  相似文献   
13.
Biodiesel was produced using waste coffee grounds (WCGs) via a two-step process comprising lipid extraction and subsequent transesterification steps. Each step was statistically analyzed, and optimum conditions for each step were suggested. WCGs were found to have 16.4% lipid content with 1.9% free fatty acid (FFA) content. The liquid-solid ratio (LSR) significantly influenced lipid extraction from WCGs, while extraction time and temperature did not; 92.7% of lipid extraction efficiency was achieved at 13.7 mL-hexane/g-WCGs, 30 min of extraction time, and 25°C. Owing to the relatively low FFA content, an alkaline catalyst (NaOH) reaction was used that requires less amount of catalyst, methanol, and shorter reaction time compared to an acid catalyst reaction. Reaction time and temperature were the major factors affecting biodiesel conversion, and 94.0% of biodiesel conversion was obtained at optimum conditions for transesterification: 0.5% catalyst, 1.5 mL-methanol/g-lipid, 45°C, and 9 h of reaction time. With the use of statistical analysis tools, high lipid extraction efficiency and biodiesel conversion were achieved at relatively mild conditions, which would reduce biodiesel production cost substantially.  相似文献   
14.
15.
Here we investigate the utility of a dual-echo Echo-Planar Imaging (DE-EPI) Diffusion Weighted Imaging (DWI) approach to improve lesion conspicuity in pediatric imaging. This method delivers two ‘echo images’ for one diffusion-preparation period. We also demonstrate how the echoes can be utilized to remove transmit/receive coil-induced and static magnetic field intensity modulations on both echo images, which often mimic pathology and thereby pose diagnostic challenges. DE-EPI DWI data were acquired in 18 pediatric patients with abnormal diffusion lesions, and 46 pediatric patient controls at 3T. Echo1 [TE = 45ms] and Echo2 [TE = 86ms] were corrected for signal intensity variation across the images by exploiting the images equivalent coil-sensitivity and susceptibility-induced modulations. Two neuroradiologists independently reviewed Echo1 and Echo2 and their intensity-corrected variants (cEcho1 and cEcho2) on a 7-point Likert scale, with grading on lesion conspicuity diagnostic confidence. The apparent diffusion coefficient (ADC) map from Echo1 was used to validate presence of true pathology. Echo2 was unanimously favored over Echo1 for its sensitivity for detecting acute brain injury, with a mean respective lesion conspicuity of 5.7/4.4 (p < 0.005) and diagnostic confidence of 5.1/4.3 (p = 0.025). cEcho2 was rated higher than cEcho1, with a mean respective lesion conspicuity of 5.5/4.3 (p < 0.005) and diagnostic confidence of 5.4/4.4 (p < 0.005). cEcho2 was favored over all echoes for its diagnostic reliability, particularly in regions close to the head coil. This work concludes that DE-EPI DWI is a useful alternative to conventional single-echo EPI DWI, whereby Echo2 and cEcho2 allows for improved lesion detection and overall higher diagnostic confidence.  相似文献   
16.

Introduction

Although smoking is a major risk factor for pharyngolaryngeal cancer, most smokers do not develop pharyngolaryngeal cancer.

Objectives

In the prospective Korean Cancer Prevention Study-II (KCPS-II), we investigated the application of metabolomics to differentiate smokers with incident pharyngolaryngeal cancer (pharyngolaryngeal cancer group) from smokers who remained free from cancer (controls) during a mean follow-up period of 7 years and aimed to discover valuable early biomarkers of pharyngolaryngeal cancer.

Methods

We used baseline serum samples from 30 smoking men with incident pharyngolaryngeal cancer and 59 age-matched cancer-free smoking men. Metabolic alterations associated with the incidence of pharyngolaryngeal cancer were investigated by performing metabolomics on baseline serum samples using ultra-performance liquid chromatography-linear-trap quadrupole-Orbitrap mass spectrometry.

Results

Compared to the control group, the pharyngolaryngeal cancer group showed significantly higher oxidized LDL levels. Seventeen metabolites were differentially abundant between the two groups. At baseline, compared to controls, smokers with incident pharyngolaryngeal cancer during follow-up showed significantly higher levels of pyroglutamic acid (glutathione metabolism) but lower levels of lysophosphatidylcholines (lysoPCs) C14:0, C15:0, C16:0, C17:0, C18:0, and C20:5; glycerophosphocholine; PC C36:5; lysoPEs C16:0, C20:1, and C22:0 (glycerophospholipid metabolism); SM (d18:0/16:1); and SM (d18:1/18:1) (sphingomyelin metabolism). Furthermore, smokers with incident pharyngolaryngeal cancer showed significantly higher levels of oleamide and lower levels of tryptophan and linoleyl carnitine at baseline than cancer-free smokers.

Conclusion

This prospective study showed the clinical relevance of dysregulated metabolism of glutathione, glycerophospholipids and sphingolipids to the pathogenesis of pharyngolaryngeal cancer among smokers. These data suggest that the dysregulation of these metabolic processes may be a key mechanism underlying pharyngolaryngeal cancer progression and development.
  相似文献   
17.
The activity of ribose-5-phosphate isomerases (RpiB) from Clostridium difficile for d-ribose isomerization was optimal at pH 7.5 and 40°C, while that from Thermotoga maritima for l-talose isomerization was optimal at pH 8.0 and 70°C. C. difficile RpiB exhibited activity only with aldose substrates possessing hydroxyl groups oriented in the right-handed configuration (Fischer projections) at the C2 and C3 positions, such as d-ribose, d-allose, l-talose, l-lyxose, d-gulose, and l-mannose. In contrast, T. maritima RpiB displayed activity only with aldose substrates possessing hydroxyl groups configured the same direction at the C2, C3, and C4 positions, such as the d- and l-forms of ribose, talose, and allose.  相似文献   
18.
19.
Due to the highly immunogenic nature of renal cell carcinoma (RCC), the tumor microenvironment (TME) is enriched with various innate and adaptive immune subsets. In particular, gamma-delta (γδ) T cells can act as potent attractive mediators of adoptive cell transfer immunotherapy because of their unique properties such as non-reliance on major histocompatibility complex expression, their ability to infiltrate human tumors and recognize tumor antigens, relative insensitivity to immune checkpoint molecules, and broad tumor cytotoxicity. Therefore, it is now critical to better characterize human γδ T-cell subsets and their mechanisms in RCCs, especially the stage of differentiation. In this study, we aimed to identify γδ T cells that might have adaptive responses against RCC progression. We characterized γδ T cells in peripheral blood and tumor-infiltrating lymphocytes (TILs) in freshly resected tumor specimens from 20 RCC patients. Furthermore, we performed a gene set enrichment analysis on RNA-sequencing data from The Cancer Genome Atlas (TCGA) derived from normal kidneys and RCC tumors to ascertain the association between γδ T-cell infiltration and anti-cancer immune activity. Notably, RCC-infiltrating CD3low Vγ9Vδ1 T cells with a terminally differentiated effector memory phenotype with up-regulated activation/exhaustion molecules were newly detected as predominant TILs, and the cytotoxic activity of these cells against RCC was confirmed in vitro. In an additional analysis of the TCGA RCC dataset, γδ T-cell enrichment scores correlated strongly with those for CTLs, Th1 cells, “exhausted” T cells, and M1 macrophages, suggesting active involvement of γδ T cells in anti-tumor rather than pro-tumor activity, and Vδ1 cells were more abundant than Vδ2 or Vδ3 cells in RCC tumor samples. Thus, we posit that Vγ9Vδ1 T cells may represent an excellent candidate for adoptive immunotherapy in RCC patients with a high risk of relapse after surgery.  相似文献   
20.
RNase E (Rne) plays a key role in the processing and degradation of RNA in Escherichia coli. In the genome of Vibrio vulnificus, one open reading frame potentially encodes a protein homologous to E. coli RNase E, designated RNase EV, which N-terminal (1-500 amino acids) has 86.4% amino acid identity to the N-terminal catalytic part of RNase E (N-Rne). Here, we report that both the full-length and the N-terminal part of RNase EV (N-RneV) functionally complement E. coli RNase E and their expression consequently supports normal growth of RNase E-depleted E. coli cells. E. coli cells expressing N-RneV showed copy numbers of ColE1-type plasmid similar to that of E. coli cells expressing N-Rne, indicating in vivo ribonucleolytic activity of N-RneV on RNA I, an antisense regulator of ColE1-type plasmid replication. In vitro cleavage assays further showed that N-RneV has cleavage activity and specificity of RNase E on RNase E-targeted sequence of RNA I (BR13). Our findings suggest that RNase E-like proteins have conserved enzymatic properties that determine substrate specificity across species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号