首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8012篇
  免费   708篇
  国内免费   585篇
  9305篇
  2024年   20篇
  2023年   116篇
  2022年   281篇
  2021年   454篇
  2020年   300篇
  2019年   351篇
  2018年   328篇
  2017年   235篇
  2016年   388篇
  2015年   515篇
  2014年   660篇
  2013年   606篇
  2012年   722篇
  2011年   615篇
  2010年   430篇
  2009年   337篇
  2008年   416篇
  2007年   399篇
  2006年   290篇
  2005年   252篇
  2004年   199篇
  2003年   188篇
  2002年   136篇
  2001年   141篇
  2000年   130篇
  1999年   152篇
  1998年   91篇
  1997年   80篇
  1996年   70篇
  1995年   48篇
  1994年   56篇
  1993年   31篇
  1992年   49篇
  1991年   39篇
  1990年   23篇
  1989年   33篇
  1988年   23篇
  1987年   30篇
  1986年   13篇
  1985年   20篇
  1984年   12篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1965年   1篇
排序方式: 共有9305条查询结果,搜索用时 15 毫秒
991.
The cardiovascular complications were highly prevalent in type 2 diabetes mellitus (T2DM), even at the early stage of T2DM or the state of intensive glycemic control. Therefore, there is an urgent need for the intervention of cardiovascular complications in T2DM. Herein, the new hybrids of NO donor and SGLT2 inhibitor were design to achieve dual effects of anti-hyperglycemic and anti-thrombosis. As expected, the preferred hybrid 2 exhibited moderate SGLT2 inhibitory effects and anti-platelet aggregation activities, and its anti-platelet effect mediated by NO was also confirmed in the presence of NO scavenger. Moreover, compound 2 revealed significantly hypoglycemic effects and excretion of urinary glucose during an oral glucose tolerance test in mice. Potent and multifunctional hybrid, such as compound 2, is expected as a potential candidate for the intervention of cardiovascular complications in T2DM.  相似文献   
992.
The distribution of circulating lipoprotein particles affects the risk for cardiovascular disease (CVD) in humans. Lipoproteins are historically defined by their density, with low-density lipoproteins positively and high-density lipoproteins (HDLs) negatively associated with CVD risk in large populations. However, these broad definitions tend to obscure the remarkable heterogeneity within each class. Evidence indicates that each class is composed of physically (size, density, charge) and compositionally (protein and lipid) distinct subclasses exhibiting unique functionalities and differing effects on disease. HDLs in particular contain upward of 85 proteins of widely varying function that are differentially distributed across a broad range of particle diameters. We hypothesized that the plasma lipoproteins, particularly HDL, represent a continuum of phospholipid platforms that facilitate specific protein–protein interactions. To test this idea, we separated normal human plasma using three techniques that exploit different lipoprotein physicochemical properties (gel filtration chromatography, ionic exchange chromatography, and preparative isoelectric focusing). We then tracked the co-separation of 76 lipid-associated proteins via mass spectrometry and applied a summed correlation analysis to identify protein pairs that may co-reside on individual lipoproteins. The analysis produced 2701 pairing scores, with the top hits representing previously known protein–protein interactions as well as numerous unknown pairings. A network analysis revealed clusters of proteins with related functions, particularly lipid transport and complement regulation. The specific co-separation of protein pairs or clusters suggests the existence of stable lipoprotein subspecies that may carry out distinct functions. Further characterization of the composition and function of these subspecies may point to better targeted therapeutics aimed at CVD or other diseases.Lipoproteins are circulating emulsions of protein and lipid that play important roles, both positive and negative, in cardiovascular disease (CVD).1 Historically defined by their density as separated by ultracentrifugation, the major lipoprotein classes include the neutral lipid ester-rich very low-density and low-density lipoproteins (VLDLs and LDLs, respectively), which function to transport triglyceride and cholesterol from the liver to the peripheral tissues. Significant epidemiological evidence, in vitro studies, animal experiments, and human clinical trials have shown that high-LDL cholesterol is a bona fide causative factor in CVD (1). In contrast, protein- and phospholipid-rich high-density lipoproteins (HDLs) are thought to mediate the reverse transport of cholesterol from the periphery to the liver for catabolism and to perform anti-oxidative and anti-inflammatory functions (reviewed in Refs. 2 and 3). A host of human epidemiology and animal studies indicate that HDLs are atheroprotective (4). However, recent clinical trials of therapeutics that generically raise HDL, at least as measured by its cholesterol levels, have failed to confer the expected CVD protections (57).Although these traditional density-centric definitions have been used for nearly 40 years, accumulating evidence indicates that they are not particularly reflective of lipoprotein compositional and functional complexity. With respect to most physical traits (size, charge, lipid content, protein content, etc.), one can demonstrate significant heterogeneity within each density class. This suggests that particle subspecies exist with unique functions and effects on disease. For example, LDL can be resolved into large, buoyant and small, dense forms (8), with subjects carrying more cholesterol in the small, dense LDL exhibiting a greater CVD risk (9). HDL is particularly noted for heterogeneity, as it can be separated into numerous subfractions by density (10), diameter (11), charge (12), and major apolipoprotein content (13). Most strikingly, recent applications of soft-ionization mass spectrometry (MS) have identified upward of 85 HDL proteins with functions that go well beyond the structural apolipoproteins, lipid transport proteins, and lipid-modifying enzymes known from previous biochemical studies (14, 15). Many of these proteins imply functions as diverse as complement regulation, acute phase response, protease inhibition, and innate immunity (16). Individual HDL subspecies can apparently draw from this palette of proteins to produce distinct particles of distinct function. One well-defined HDL subfraction, termed trypanosome lytic factor, contains apolipoprotein apoA-I, haptoglobin-related protein, and apoL-I. Working together, these proteins enter the trypanosome brucei brucei and kill it via lysosomal disruption (17). There are numerous other instances of on-particle protein cooperation in HDL related to CVD (reviewed in Ref. 15). Furthermore, two-dimensional electrophoresis studies by Asztalos and colleagues (18), as well as our own work (11, 19), strongly support the concept that certain apolipoproteins segregate among different HDL particles. These observations present the intriguing possibility that the phospholipids of HDLs act as an organizing platform that facilitates the assembly of specific protein complexes (20). Such subspecies could have important functional implications in the context of CVD protection, inflammation, or even innate immune function. Furthermore, this subspeciation may explain why therapeutics that raise HDL cholesterol levels across the board have not yet shown promise with regard to CVD.To address this hypothesis, we began to think of lipoproteins as a continuum of phospholipid platforms that support the assembly of specific protein complexes analogous to those in cells that perform coordinated biological functions (i.e. ribosomes, centrosomes, etc.). Two common methods for characterizing protein complexes are tandem affinity purification (21) and immunoprecipitation. Both rely on the specific pull-down of a target protein (by either an introduced affinity tag or an antibody) followed by the identification of co-precipitated proteins via MS. Unfortunately, tandem affinity purification strategies are impractical in humans, and we have found that immunoprecipitation experiments with human plasma lipoproteins result in a high false-positive rate due to the low abundance of most of these proteins, particularly those in HDLs. Therefore, we took an alternative approach called co-separation analysis, a method based on the principle that stable protein complexes can be identified by tracking their co-migration as they undergo biochemical separation by multiple orthogonal approaches (22). Native proteins are analyzed in an unbiased manner without affinity tags or antibodies, and purification to homogeneity is not necessary for the identification of putative protein complexes.Most current studies of the lipoprotein proteome utilize samples isolated via density ultracentrifugation because contaminating lipid-unassociated lipoproteins, which can be highly abundant and obscure the identification of targeted lipid-associated proteins, are thus removed prior to the analysis. In previous work, we characterized the use of a calcium silica hydrate (CSH) resin that allowed the specific isolation of phospholipid-associated proteins and their subsequent MS identification without ultracentrifugation (11). This advance enabled the use of a variety of non-density-based separation methods for the study of plasma lipoproteins. Here, we take advantage of this to analyze the proteome of human plasma lipoproteins separated via three separation techniques that exploit different physicochemical properties: (i) gel filtration chromatography (size), (ii) anion exchange chromatography (charge interaction), and (iii) isoelectric focusing. By tracking the co-migration of specific proteins across these separations (Fig. 1), we identified a host of putative protein pairings, including the previously known trypanosome lytic factor HDL fraction, for further biochemical verification and characterization.Open in a separate windowFig. 1.Overview of the multi-dimensional separation co-migration analysis used in this study (see “Experimental Procedures” for details).  相似文献   
993.
Li Y  Lin H  Deng C  Yang P  Zhang X 《Proteomics》2008,8(2):238-249
In this work, we present, to our knowledge, the first demonstration of the utility of iron oxide magnetic microspheres coated with gallium oxide for the highly selective enrichment of phosphopeptide prior to mass spectrometric analysis. These microspheres that we prepared not only have a shell of gallium oxide, giving them a high-trapping capacity for the phosphopeptides, but also their magnetic property enables easy isolation by positioning an external magnetic field. Tryptic digest products of phosphoproteins including beta-casein, ovalbumin, casein, as well as five protein mixtures were used as the samples to exemplify the feasibility of this approach. In very short time (only 0.5 min), phosphopeptides sufficient for characterization by MALDI-TOF-MS were selectively enriched by the Ga(2)O(3)-coated Fe(3)O(4) microspheres. The performance of the Ga(2)O(3)-coated Fe(3)O(4) microspheres were further compared with Fe(3+)-immobilized magnetic silica microspheres, commercial Fe(3+)-IMAC resin, and TiO2 beads for enrichment of peptides originating from tryptic digestion of beta-casein and BSA with a molar ratio of 1:50, and the results proved a stronger selective ability of Ga(2)O(3)-coated Fe(3)O(4) microspheres over the other materials. Finally, the Ga(2)O(3)-coated Fe(3)O(4) microspheres were successfully utilized for enrichment of phosphopeptides from digestion products of rat liver extract. All results show that Ga(2)O(3)-coated Fe(3)O(4) microsphere is an effective material for selective isolation and concentration of phosphopeptides.  相似文献   
994.
Spondyloepiphyseal dysplasia congenita (SEDC) is an autosomal dominant chondrodysplasia characterized by disproportionate short-trunk dwarfism, skeletal and vertebral deformities. Exome sequencing and Sanger sequencing were performed in a Chinese Han family with typical SEDC, and a novel mutation, c.620G>A (p.Gly207Glu), in the collagen type II alpha-1 gene (COL2A1) was identified. The mutation may impair protein stability, and lead to dysfunction of type II collagen. Family-based study suggested that the mutation is a de novo mutation. Our study extends the mutation spectrum of SEDC and confirms genotype-phenotype relationship between mutations at glycine in the triple helix of the alpha-1(II) chains of the COL2A1 and clinical findings of SEDC, which may be helpful in the genetic counseling of patients with SEDC.  相似文献   
995.
Three series of novel urushiol derivatives were designed by introducing a hydroxamic acid moiety into the tail of an alkyl side chain and substituents with differing electronic properties or steric bulk onto the benzene ring and alkyl side chain. The compounds’ binding affinity toward HDAC8 was screened by Glide docking. The highest-scoring compounds were processed further with molecular docking, MD simulations, and binding free energy studies to analyze the binding modes and mechanisms. Ten compounds had Glide scores of ?8.2 to ?10.2, which revealed that introducing hydroxy, carbonyl, amino, or methyl ether groups into the alkyl side chain or addition of –F, –Cl, sulfonamide, benzamido, amino, or hydroxy substituents on the benzene ring could significantly increase binding affinity. Molecular docking studies revealed that zinc ion coordination, hydrogen bonding, and hydrophobic interactions contributed to the high calculated binding affinities of these compounds toward HDAC8. MD simulations and binding free energy studies showed that all complexes possessed good stability, as characterized by low RMSDs, low RMSFs of residues, moderate hydrogen bonding and zinc ion coordination and low values of binding free energies. Hie147, Tyr121, Phe175, Hip110, Phe119, Tyr273, Lys21, Gly118, Gln230, Leu122, Gly269, and Gly107 contributed favorably to the binding; and Van der Waals and electrostatic interactions provided major contributions to the stability of these complexes. These results show the potential of urushiol derivatives as HDAC8 binding lead compounds, which have great therapeutic potential in the treatment of various malignancies, neurological disorders, and human parasitic diseases.  相似文献   
996.
997.

Background

Tiotropium is a once-daily, long-acting anticholinergic bronchodilator with the potential to alleviate airway obstruction in cystic fibrosis. Our objective was to evaluate the efficacy and safety of 2.5 and 5 µg once-daily tiotropium delivered via the Respimat Soft Mist Inhaler vs. placebo in people with cystic fibrosis.

Methods

This phase 2, 12-week, randomized, double-blind, placebo-controlled parallel-group study of tiotropium Respimat as add-on to usual cystic fibrosis maintenance therapy included people with cystic fibrosis with pre-bronchodilator forced expiratory volume in 1 second (FEV1) ≥25% predicted. Co-primary efficacy end points were change from baseline in percent-predicted FEV1 area under the curve from 0 to 4 hours (FEV1 AUC0–4h), and trough FEV1 at the end of week 12.

Findings

A total of 510 subjects with cystic fibrosis aged 5–69 years were randomized. Both doses of tiotropium resulted in significant improvement compared with placebo in the co-primary efficacy end points at the end of week 12 (change from baseline in percent-predicted FEV1 AUC0–4h: 2.5 µg: 2.94%, 95% confidence interval 1.19–4.70, p = 0.001; 5 µg: 3.39%, 95% confidence interval 1.67–5.12, p = 0.0001; in percent-predicted trough FEV1∶2.5 µg: 2.24%, p = 0.2; 5 µg: 2.22%, p = 0.02). There was a greater benefit with tiotropium 5 vs. 2.5 µg. No treatment-related adverse events or unexpected safety findings were observed in patients taking tiotropium.

Conclusions

Tiotropium significantly improved lung function in people with cystic fibrosis. The improvement was greater with the higher dose than the lower dose, with no difference in adverse events.

Trial Registration

ClinicalTrials.gov NCT00737100 EudraCT 2008-001156-43.  相似文献   
998.
Liang  Yidan  Deng  Yongbing  Zhao  Jun  Liu  Liu  Wang  Jia  Chen  Peng  Zhang  Qingtao  Sun  Chao  Wang  Yanglingxi  Xiang  Yi  He  Zhaohui 《Neurochemical research》2022,47(3):692-700

Ferroptosis is a novel form of regulated cell death involved in the pathophysiological process of experimental subarachnoid hemorrhage (SAH), but how neuronal ferroptosis occurs remains unknown. In this study, we report that SAH-induced ferroptosis is macroautophagy/autophagy dependent because the inhibition of autophagy by knocking out autophagy-related gene 5 (ATG5) apparently mitigated SAH-induced ferroptosis. We created an experimental SAH model in Sprague–Dawley rats to determine the possible mechanism. We found that SAH can trigger neuronal ferroptosis, as evidenced by the disruption of iron homeostasis, elevation of intracellular lipid peroxidation (LPO) and decreased expression of ferroptosis–protective proteins. Then, we inhibited autophagy by ATG5 gene knockout, showing that autophagy inhibition can reduce the intracellular iron level and LPO, improve the expression of ferroptosis–protective proteins, and subsequently alleviate SAH-induced cell death. Additionally, autophagy inhibition also attenuated SAH prognostic indicators, such as brain edema, blood–brain barrier permeability, and neurological deficits. These findings not only present an opinion that SAH triggers neuronal ferroptosis via activation of ferritinophagy but also indicate that regulating ferritinophagy and maintaining iron homeostasis could provide clues for the prevention of early brain injury.

  相似文献   
999.
1000.

Background

Malignant cell growth and chemoresistance, the main obstacles in treating gastrointestinal cancer (GIC), rely on the Hippo and p53 signalling pathways. However, the upstream regulatory mechanisms of these pathways remain complex and poorly understood.

Methods

Immunohistochemistry (IHC), western blot and RT-qPCR were used to analyse the expression of RNF146, miR-3133 and key components of Hippo and p53 pathway. CCK-8, colony formation, drug sensitivity assays and murine xenograft models were used to investigate the effect of RNF146 and miR-3133 in GIC. Further exploration of the upstream regulatory mechanism was performed using bioinformatics analysis, dual-luciferase reporter gene, immunoprecipitation assays and bisulfite sequencing PCR (BSP).

Results

Clinical samples, in vitro and in vivo experiments demonstrated that RNF146 exerts oncogenic effects in GIC by regulating the Hippo pathway. Bioinformatics analysis identified a novel miRNA, miR-3133, as an upstream regulatory factor of RNF146. fluorescence in situ hybridization and RT-qPCR assays revealed that miR-3133 was less expressed in gastrointestinal tumour tissues and was associated with adverse pathological features. Functional assays and animal models showed that miR-3133 promoted the proliferation and chemotherapy sensitivity of GIC cells. miR-3133 affected YAP1 protein expression by targeting RNF146, AGK and CUL4A, thus activating the Hippo pathway. miR-3133 inhibited p53 protein degradation and extended p53's half-life by targeting USP15, SPIN1. BSP experiments confirmed that miR-3133 promoter methylation is an important reason for its low expression.

Conclusion

miR-3133 inhibits GIC progression by activating the Hippo and p53 signalling pathways via multi-targets, including RNF146, thereby providing prognostic factors and valuable potential therapeutic targets for GIC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号